Suppr超能文献

KCNQ1钾通道选择性过滤器中的一个失活门。

An inactivation gate in the selectivity filter of KCNQ1 potassium channels.

作者信息

Gibor Gilad, Yakubovich Daniel, Rosenhouse-Dantsker Avia, Peretz Asher, Schottelndreier Hella, Seebohm Guiscard, Dascal Nathan, Logothetis Diomedes E, Paas Yoav, Attali Bernard

机构信息

Department of Physiology and Pharmacology, Sackler Medical School, Tel Aviv University, Tel Aviv, Israel.

出版信息

Biophys J. 2007 Dec 15;93(12):4159-72. doi: 10.1529/biophysj.107.107987. Epub 2007 Aug 17.

Abstract

Inactivation is an inherent property of most voltage-gated K(+) channels. While fast N-type inactivation has been analyzed in biophysical and structural details, the mechanisms underlying slow inactivation are yet poorly understood. Here, we characterized a slow inactivation mechanism in various KCNQ1 pore mutants, including L273F, which hinders entry of external Ba(2+) to its deep site in the pore and traps it by slowing its egress. Kinetic studies, molecular modeling, and dynamics simulations suggest that this slow inactivation involves conformational changes that converge to the outer carbonyl ring of the selectivity filter, where the backbone becomes less flexible. This mechanism involves acceleration of inactivation kinetics and enhancement of Ba(2+) trapping at elevated external K(+) concentrations. Hence, KCNQ1 slow inactivation considerably differs from C-type inactivation where vacation of K(+) from the filter was invoked. We suggest that trapping of K(+) at s(1) due to filter rigidity and hindrance of the dehydration-resolvation transition underlie the slow inactivation of KCNQ1 pore mutants.

摘要

失活是大多数电压门控钾离子通道的固有特性。虽然快速N型失活已在生物物理和结构细节方面得到分析,但慢失活的潜在机制仍知之甚少。在此,我们对各种KCNQ1孔道突变体(包括L273F)中的慢失活机制进行了表征,L273F会阻碍外部Ba(2+)进入其在孔道中的深部位点,并通过减缓其流出而将其捕获。动力学研究、分子建模和动力学模拟表明,这种慢失活涉及构象变化,这些变化汇聚到选择性过滤器的外部羰基环,此处主链变得不那么灵活。该机制涉及在外部钾离子浓度升高时失活动力学的加速和Ba(2+)捕获的增强。因此,KCNQ1慢失活与C型失活有很大不同,后者是由于钾离子从过滤器中腾出而引发的。我们认为,由于过滤器刚性以及脱水-再溶剂化转变的阻碍导致钾离子在s(1)处被捕获,是KCNQ1孔道突变体慢失活的基础。

相似文献

1
An inactivation gate in the selectivity filter of KCNQ1 potassium channels.
Biophys J. 2007 Dec 15;93(12):4159-72. doi: 10.1529/biophysj.107.107987. Epub 2007 Aug 17.
3
Tight coupling of rubidium conductance and inactivation in human KCNQ1 potassium channels.
J Physiol. 2003 Oct 15;552(Pt 2):369-78. doi: 10.1113/jphysiol.2003.046490.
4
The binding of kappa-Conotoxin PVIIA and fast C-type inactivation of Shaker K+ channels are mutually exclusive.
Biophys J. 2004 Jan;86(1 Pt 1):191-209. doi: 10.1016/S0006-3495(04)74096-5.
6
Mechanism of the modulation of Kv4:KChIP-1 channels by external K+.
Biophys J. 2008 Feb 15;94(4):1241-51. doi: 10.1529/biophysj.107.117796. Epub 2007 Oct 19.
7
KCNE3 acts by promoting voltage sensor activation in KCNQ1.
Proc Natl Acad Sci U S A. 2015 Dec 29;112(52):E7286-92. doi: 10.1073/pnas.1516238112. Epub 2015 Dec 14.
9
External pore collapse as an inactivation mechanism for Kv4.3 K+ channels.
J Membr Biol. 2002 Jul 1;188(1):73-86. doi: 10.1007/s00232-001-0173-3.
10
Differential roles of S6 domain hinges in the gating of KCNQ potassium channels.
Biophys J. 2006 Mar 15;90(6):2235-44. doi: 10.1529/biophysj.105.067165. Epub 2005 Dec 2.

引用本文的文献

1
Do selectivity filter carbonyls in K channels flip away from the pore? Two-dimensional infrared spectroscopy study.
J Struct Biol X. 2024 Jul 15;10:100108. doi: 10.1016/j.yjsbx.2024.100108. eCollection 2024 Dec.
2
A benzodiazepine activator locks K7.1 channels open by electro-mechanical uncoupling.
Commun Biol. 2022 Apr 1;5(1):301. doi: 10.1038/s42003-022-03229-8.
3
P-Loop Channels: Experimental Structures, and Physics-Based and Neural Networks-Based Models.
Membranes (Basel). 2022 Feb 16;12(2):229. doi: 10.3390/membranes12020229.
4
ML277 regulates KCNQ1 single-channel amplitudes and kinetics, modified by voltage sensor state.
J Gen Physiol. 2021 Dec 6;153(12). doi: 10.1085/jgp.202112969. Epub 2021 Oct 12.
6
Gating and Regulation of KCNQ1 and KCNQ1 + KCNE1 Channel Complexes.
Front Physiol. 2020 Jun 4;11:504. doi: 10.3389/fphys.2020.00504. eCollection 2020.
8
Mechanisms Underlying the Dual Effect of Polyunsaturated Fatty Acid Analogs on Kv7.1.
Cell Rep. 2018 Sep 11;24(11):2908-2918. doi: 10.1016/j.celrep.2018.08.031.
9
Inactivation gating of Kv7.1 channels does not involve concerted cooperative subunit interactions.
Channels (Austin). 2018 Jan 1;12(1):89-99. doi: 10.1080/19336950.2018.1441649.

本文引用的文献

1
Calmodulin is essential for cardiac IKS channel gating and assembly: impaired function in long-QT mutations.
Circ Res. 2006 Apr 28;98(8):1055-63. doi: 10.1161/01.RES.0000218979.40770.69. Epub 2006 Mar 23.
2
Molecular determinants of gating at the potassium-channel selectivity filter.
Nat Struct Mol Biol. 2006 Apr;13(4):311-8. doi: 10.1038/nsmb1069. Epub 2006 Mar 12.
3
Voltage-dependent gating at the KcsA selectivity filter.
Nat Struct Mol Biol. 2006 Apr;13(4):319-22. doi: 10.1038/nsmb1070. Epub 2006 Mar 12.
4
Long QT syndrome: reduced repolarization reserve and the genetic link.
J Intern Med. 2006 Jan;259(1):59-69. doi: 10.1111/j.1365-2796.2005.01589.x.
5
A structural interpretation of voltage-gated potassium channel inactivation.
Prog Biophys Mol Biol. 2006 Oct;92(2):185-208. doi: 10.1016/j.pbiomolbio.2005.10.001. Epub 2005 Nov 8.
6
Pore conformations and gating mechanism of a Cys-loop receptor.
Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):15877-82. doi: 10.1073/pnas.0507599102. Epub 2005 Oct 24.
7
Molecular physiology of cardiac repolarization.
Physiol Rev. 2005 Oct;85(4):1205-53. doi: 10.1152/physrev.00002.2005.
8
Crystal structure of a mammalian voltage-dependent Shaker family K+ channel.
Science. 2005 Aug 5;309(5736):897-903. doi: 10.1126/science.1116269. Epub 2005 Jul 7.
9
Structural basis of TEA blockade in a model potassium channel.
Nat Struct Mol Biol. 2005 May;12(5):454-9. doi: 10.1038/nsmb929. Epub 2005 Apr 24.
10
A gate in the selectivity filter of potassium channels.
Structure. 2005 Apr;13(4):591-600. doi: 10.1016/j.str.2004.12.019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验