Norgaard Anders B, Ferkinghoff-Borg Jesper, Lindorff-Larsen Kresten
Department of Molecular Biology and Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
Biophys J. 2008 Jan 1;94(1):182-92. doi: 10.1529/biophysj.107.108241. Epub 2007 Sep 7.
The determination of conformational preferences in unfolded and disordered proteins is an important challenge in structural biology. We here describe an algorithm to optimize energy functions for the simulation of unfolded proteins. The procedure is based on the maximum likelihood principle and employs a fast and efficient gradient descent method to find the set of parameters of the energy function that best explain the experimental data. We first validate the method by using synthetic reference data, and subsequently apply the algorithms to data from nuclear magnetic resonance spin-labeling experiments on the Delta131Delta fragment of Staphylococcal nuclease. A significant strength of the procedure that we present is that it directly uses experimental data to optimize the energy parameters, without relying on the availability of high resolution structures. The procedure is fully general and can be applied to a range of experimental data and energy functions including the force fields used in molecular dynamics simulations.
确定未折叠和无序蛋白质中的构象偏好是结构生物学中的一项重要挑战。我们在此描述一种用于优化能量函数以模拟未折叠蛋白质的算法。该过程基于最大似然原理,并采用快速有效的梯度下降方法来找到最能解释实验数据的能量函数参数集。我们首先使用合成参考数据验证该方法,随后将该算法应用于来自葡萄球菌核酸酶Delta131Delta片段的核磁共振自旋标记实验的数据。我们提出的过程的一个显著优点是它直接使用实验数据来优化能量参数,而不依赖于高分辨率结构的可用性。该过程具有完全通用性,可应用于一系列实验数据和能量函数,包括分子动力学模拟中使用的力场。