Suppr超能文献

用于模拟未折叠蛋白质的能量函数的实验参数化

Experimental parameterization of an energy function for the simulation of unfolded proteins.

作者信息

Norgaard Anders B, Ferkinghoff-Borg Jesper, Lindorff-Larsen Kresten

机构信息

Department of Molecular Biology and Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.

出版信息

Biophys J. 2008 Jan 1;94(1):182-92. doi: 10.1529/biophysj.107.108241. Epub 2007 Sep 7.

Abstract

The determination of conformational preferences in unfolded and disordered proteins is an important challenge in structural biology. We here describe an algorithm to optimize energy functions for the simulation of unfolded proteins. The procedure is based on the maximum likelihood principle and employs a fast and efficient gradient descent method to find the set of parameters of the energy function that best explain the experimental data. We first validate the method by using synthetic reference data, and subsequently apply the algorithms to data from nuclear magnetic resonance spin-labeling experiments on the Delta131Delta fragment of Staphylococcal nuclease. A significant strength of the procedure that we present is that it directly uses experimental data to optimize the energy parameters, without relying on the availability of high resolution structures. The procedure is fully general and can be applied to a range of experimental data and energy functions including the force fields used in molecular dynamics simulations.

摘要

确定未折叠和无序蛋白质中的构象偏好是结构生物学中的一项重要挑战。我们在此描述一种用于优化能量函数以模拟未折叠蛋白质的算法。该过程基于最大似然原理,并采用快速有效的梯度下降方法来找到最能解释实验数据的能量函数参数集。我们首先使用合成参考数据验证该方法,随后将该算法应用于来自葡萄球菌核酸酶Delta131Delta片段的核磁共振自旋标记实验的数据。我们提出的过程的一个显著优点是它直接使用实验数据来优化能量参数,而不依赖于高分辨率结构的可用性。该过程具有完全通用性,可应用于一系列实验数据和能量函数,包括分子动力学模拟中使用的力场。

相似文献

3
Fast protein fold estimation from NMR-derived distance restraints.基于核磁共振衍生距离约束的快速蛋白质折叠估计。
Bioinformatics. 2008 Jan 15;24(2):272-5. doi: 10.1093/bioinformatics/btm564. Epub 2007 Nov 13.
7
Towards complete descriptions of the free-energy landscapes of proteins.迈向对蛋白质自由能景观的完整描述。
Philos Trans A Math Phys Eng Sci. 2005 Feb 15;363(1827):433-50; discussion 450-2. doi: 10.1098/rsta.2004.1501.

引用本文的文献

2
Reversible molecular simulation for training classical and machine-learning force fields.用于训练经典和机器学习力场的可逆分子模拟。
Proc Natl Acad Sci U S A. 2025 Jun 3;122(22):e2426058122. doi: 10.1073/pnas.2426058122. Epub 2025 May 28.

本文引用的文献

1
Atomic-level characterization of disordered protein ensembles.无序蛋白质聚集体的原子水平表征
Curr Opin Struct Biol. 2007 Feb;17(1):3-14. doi: 10.1016/j.sbi.2007.01.009. Epub 2007 Jan 23.
2
Large systematic errors compromise quantitation of intrinsically unstructured proteins.
Anal Biochem. 2007 Jan 15;360(2):321-3. doi: 10.1016/j.ab.2006.10.027. Epub 2006 Nov 9.
7
Relation between native ensembles and experimental structures of proteins.蛋白质天然构象集合与实验结构之间的关系。
Proc Natl Acad Sci U S A. 2006 Jul 18;103(29):10901-6. doi: 10.1073/pnas.0511156103. Epub 2006 Jul 7.
10
High-resolution protein folding with a transferable potential.基于可转移势场的高分辨率蛋白质折叠
Proc Natl Acad Sci U S A. 2005 Dec 27;102(52):18914-9. doi: 10.1073/pnas.0502181102. Epub 2005 Dec 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验