Suppr超能文献

流行病的在线检测与量化

Online detection and quantification of epidemics.

作者信息

Pelat Camille, Boëlle Pierre-Yves, Cowling Benjamin J, Carrat Fabrice, Flahault Antoine, Ansart Séverine, Valleron Alain-Jacques

机构信息

Université Pierre et Marie Curie-Paris 6, UMR-S 707, Paris, 75012 France.

出版信息

BMC Med Inform Decis Mak. 2007 Oct 15;7:29. doi: 10.1186/1472-6947-7-29.

Abstract

BACKGROUND

Time series data are increasingly available in health care, especially for the purpose of disease surveillance. The analysis of such data has long used periodic regression models to detect outbreaks and estimate epidemic burdens. However, implementation of the method may be difficult due to lack of statistical expertise. No dedicated tool is available to perform and guide analyses.

RESULTS

We developed an online computer application allowing analysis of epidemiologic time series. The system is available online at http://www.u707.jussieu.fr/periodic_regression/. The data is assumed to consist of a periodic baseline level and irregularly occurring epidemics. The program allows estimating the periodic baseline level and associated upper forecast limit. The latter defines a threshold for epidemic detection. The burden of an epidemic is defined as the cumulated signal in excess of the baseline estimate. The user is guided through the necessary choices for analysis. We illustrate the usage of the online epidemic analysis tool with two examples: the retrospective detection and quantification of excess pneumonia and influenza (P&I) mortality, and the prospective surveillance of gastrointestinal disease (diarrhoea).

CONCLUSION

The online application allows easy detection of special events in an epidemiologic time series and quantification of excess mortality/morbidity as a change from baseline. It should be a valuable tool for field and public health practitioners.

摘要

背景

时间序列数据在医疗保健领域越来越容易获取,特别是用于疾病监测目的。长期以来,此类数据的分析一直使用周期性回归模型来检测疫情爆发并估计流行负担。然而,由于缺乏统计专业知识,该方法的实施可能会很困难。目前没有专门的工具可用于执行和指导分析。

结果

我们开发了一个在线计算机应用程序,用于分析流行病学时间序列。该系统可在http://www.u707.jussieu.fr/periodic_regression/在线获取。数据假定由周期性基线水平和不定期发生的疫情组成。该程序允许估计周期性基线水平和相关的预测上限。后者定义了疫情检测的阈值。疫情负担定义为超过基线估计值的累积信号。该程序会引导用户做出分析所需的选择。我们用两个例子说明了在线疫情分析工具的用法:回顾性检测和量化肺炎和流感(P&I)超额死亡率,以及前瞻性监测胃肠道疾病(腹泻)。

结论

该在线应用程序允许轻松检测流行病学时间序列中的特殊事件,并将超额死亡率/发病率量化为相对于基线的变化。它应该是现场和公共卫生从业者的一个有价值的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ae8/2151935/cd62859fac35/1472-6947-7-29-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验