Suppr超能文献

人体血液在毛细血管中的流动。

The flow of human blood through capillary tubes.

作者信息

Sirs J A

机构信息

Department of Physiology and Biophysics, St Mary's Hospital Medical School, Paddington, London.

出版信息

J Physiol. 1991 Oct;442:569-83. doi: 10.1113/jphysiol.1991.sp018809.

Abstract
  1. The current interpretation of in vivo blood flow is mainly based on the Hagen-Poiseuille equation, although blood is not a Newtonian fluid. In this paper, experimental pressure-flow curves of blood are explained on the basis that the viscosity of the blood is the sum of two components, a Newtonian viscosity term, N, and an anomalous viscosity term equal to A/(B + D), where A and B are constants, and D the shear rate. 2. To a first approximation, blood flow in capillary tubes, comparable to that in vivo, can be deduced if the applied pressure in Poiseuille's equation is reduced by an effective back-pressure, p, equal to 8Al/3R, where l is the length of the capillary tube, and R its radius. 3. The theory explains the progressive change, from a parabolic velocity profile in large vessels, to a flattened profile in small vessels, as observed in vivo. 4. Experimental evidence is given that p is proportional to the length, and increases with decrease of R. The effect of the anomalous viscosity coefficient A was studied by varying the haematocrit, fibrinogen level, erythrocyte flexibility and temperature. 5. As the tube bore is decreased, the Fahraeus-Lindqvist effect decreases N, but this is offset by an increase of the anomalous component, A. This results, at lower pressures, in an increase of the effective blood viscosity in small vessels and of the peripheral resistance, and, at higher pressures, in a decrease of the effective blood viscosity. 5. Blood flow is proportional to the radius to the power n, where n is a variable that increases with increase of A and decrease of the applied pressure.
摘要
  1. 目前对体内血流的解释主要基于哈根 - 泊肃叶方程,尽管血液并非牛顿流体。在本文中,血液的实验压力 - 流量曲线基于以下观点进行解释:血液粘度是两个分量之和,一个牛顿粘度项N,以及一个反常粘度项,等于A /(B + D),其中A和B为常数,D为剪切速率。2. 初步近似地,如果泊肃叶方程中的外加压力通过一个有效背压p降低,就可以推导出与体内情况相当的毛细血管中的血流,该有效背压p等于8Al / 3R,其中l是毛细血管的长度,R是其半径。3. 该理论解释了在体内观察到的从大血管中抛物线形速度分布到小血管中扁平分布的逐渐变化。4. 给出了实验证据,表明p与长度成正比,并随R的减小而增加。通过改变血细胞比容、纤维蛋白原水平、红细胞柔韧性和温度来研究反常粘度系数A的影响。5. 随着管径减小,法厄斯 - 林德奎斯特效应使N减小,但这被反常分量A的增加所抵消。这导致在较低压力下小血管中有效血液粘度和外周阻力增加,而在较高压力下有效血液粘度降低。5. 血流与半径的n次方成正比,其中n是一个变量,随A的增加和外加压力的降低而增加。

相似文献

1
The flow of human blood through capillary tubes.人体血液在毛细血管中的流动。
J Physiol. 1991 Oct;442:569-83. doi: 10.1113/jphysiol.1991.sp018809.
5
Microvascular blood viscosity in vivo and the endothelial surface layer.体内微血管血液粘度与内皮表面层
Am J Physiol Heart Circ Physiol. 2005 Dec;289(6):H2657-64. doi: 10.1152/ajpheart.00297.2005. Epub 2005 Jul 22.

引用本文的文献

1
Fluid Shear Stress-Regulated Vascular Remodeling: Past, Present, and Future.流体剪切应力调节的血管重塑:过去、现在与未来
Arterioscler Thromb Vasc Biol. 2025 Jun;45(6):882-900. doi: 10.1161/ATVBAHA.125.322557. Epub 2025 Apr 10.

本文引用的文献

1
Blood viscosity: influence of erythrocyte deformation.血液粘度:红细胞变形的影响
Science. 1967 Aug 18;157(3790):827-9. doi: 10.1126/science.157.3790.827.
8
The blood rheology of man and various animal species.人类和各种动物物种的血液流变学。
Q J Exp Physiol. 1985 Jan;70(1):37-49. doi: 10.1113/expphysiol.1985.sp002895.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验