Guo Maolin, Perez Carlos, Wei Yibin, Rapoza Elise, Su Gregory, Bou-Abdallah Fadi, Chasteen N D
Department of Chemistry and Biochemistry, University of Massachusetts, Dartmouth, MA 02747-2300, USA.
Dalton Trans. 2007 Nov 21(43):4951-61. doi: 10.1039/b705136k. Epub 2007 Oct 2.
The health benefits of cranberries have long been recognized. However, the mechanisms behind its function are poorly understood. We have investigated the iron-binding properties of quercetin, the major phenolic phytochemical present in cranberries, and other selected phenolic compounds (chrysin, 3-hydroxyflavone, 3',4'-dihydroxy flavone, rutin, and flavone) in aqueous media using UV/vis, NMR and EPR spectroscopies and ESI-Mass spectrometry. Strong iron-binding properties have been confirmed for the compounds containing the "iron-binding motifs" identified in their structures. The apparent binding constants are estimated to be in the range of 10(6) M(-1) to 10(12) M(-2) in phosphate buffer at pH 7.2. Surprisingly, quercetin binds Fe(2+) even stronger than the well known Fe(2+)-chelator ferrozine at pH 7.2. This may be the first example of an oxygen-based ligand displaying stronger Fe(2+)-binding affinity than a strong nitrogen-based Fe(2+)-chelator. The strong Fe-binding properties of these phenolics argue that they may be effective in modulating cellular iron homeostasis under physiological conditions. Quercetin can completely suppress Fenton chemistry both at micromolar levels and in the presence of major cellular iron chelators like ATP or citrate. However, the radical scavenging activity of quercetin provides only partial protection against Fenton chemistry-mediated damage while Fe chelation by quercetin can completely inhibit Fenton chemistry, indicating that the chelation may be key to its antioxidant activity. These results demonstrate that quercetin and other phenolic compounds can effectively modulate iron biochemistry under physiologically relevant conditions, providing insight into the mechanism of action of bio-active phenolics.
蔓越莓对健康的益处早已得到认可。然而,其发挥作用的机制却鲜为人知。我们利用紫外可见光谱、核磁共振光谱、电子顺磁共振光谱和电喷雾质谱,研究了蔓越莓中主要的酚类植物化学物质槲皮素以及其他选定的酚类化合物(白杨素、3 - 羟基黄酮、3',4'-二羟基黄酮、芦丁和黄酮)在水介质中的铁结合特性。已证实含有在其结构中鉴定出的“铁结合基序”的化合物具有很强的铁结合特性。在pH 7.2的磷酸盐缓冲液中,表观结合常数估计在10⁶ M⁻¹至10¹² M⁻²范围内。令人惊讶的是,在pH 7.2时,槲皮素与Fe²⁺的结合甚至比著名的Fe²⁺螯合剂菲咯嗪还要强。这可能是第一个基于氧的配体比强的基于氮的Fe²⁺螯合剂表现出更强的Fe²⁺结合亲和力的例子。这些酚类物质强大的铁结合特性表明它们在生理条件下可能有效地调节细胞铁稳态。槲皮素在微摩尔水平以及在存在主要细胞铁螯合剂如ATP或柠檬酸盐的情况下,都能完全抑制芬顿反应。然而,槲皮素的自由基清除活性仅对芬顿反应介导的损伤提供部分保护,而槲皮素的铁螯合作用则可以完全抑制芬顿反应,这表明螯合作用可能是其抗氧化活性的关键。这些结果表明,槲皮素和其他酚类化合物在生理相关条件下可以有效地调节铁生物化学,为生物活性酚类物质的作用机制提供了深入了解。