Maciejewski Paul K, Rothman Douglas L
Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA.
Neurochem Int. 2008 Mar-Apr;52(4-5):809-25. doi: 10.1016/j.neuint.2007.09.015. Epub 2007 Oct 2.
To date, the glutamate-glutamine cycle has been the dominant paradigm for understanding the coordinated, compartmentalized activities of phosphate-activated glutaminase (PAG) and glutamine synthetase (GS) in support of functional glutamate trafficking in vivo. However, studies in cell cultures have repeatedly challenged the notion that functional glutamate trafficking is accomplished via the glutamate-glutamine cycle alone. The present study introduces and elaborates alternative cycles for functional glutamate trafficking that integrate glucose metabolism, glutamate anabolism, transport, and catabolism, and trafficking of TCA cycle intermediates from astrocytes to presynaptic neurons. Detailed stoichiometry for each of these alternative cycles is established by strict application of the principle of conservation of atomic species to cytosolic and mitochondrial compartments in both presynaptic neurons and astrocytes. In contrast to the glutamate-glutamine cycle, which requires ATP, but not necessarily oxidative metabolism, to function, cycles for functional glutamate trafficking based on intercellular transport of TCA cycle intermediates require oxidative processes to function. These proposed alternative cycles are energetically more efficient than, and incorporate an inherent mechanism for transporting nitrogen from presynaptic neurons to astrocytes in support of the coordinated activities of PAG and GS that is absent in, the glutamate-glutamine cycle. In light of these newly elaborated alternative cycles, it is premature to presuppose that functional glutamate trafficking in synaptic neurotransmission in vivo is sustained by the glutamate-glutamine cycle alone.
迄今为止,谷氨酸 - 谷氨酰胺循环一直是理解磷酸激活型谷氨酰胺酶(PAG)和谷氨酰胺合成酶(GS)在体内支持功能性谷氨酸转运的协调、区室化活动的主导范式。然而,细胞培养研究多次对功能性谷氨酸转运仅通过谷氨酸 - 谷氨酰胺循环来完成这一观点提出质疑。本研究介绍并阐述了功能性谷氨酸转运的替代循环,这些循环整合了葡萄糖代谢、谷氨酸合成代谢、转运和分解代谢,以及三羧酸循环中间产物从星形胶质细胞到突触前神经元的转运。通过严格应用原子种类守恒原理于突触前神经元和星形胶质细胞的胞质和线粒体区室,确定了每个替代循环的详细化学计量。与谷氨酸 - 谷氨酰胺循环不同,后者发挥功能需要ATP,但不一定需要氧化代谢,基于三羧酸循环中间产物细胞间转运的功能性谷氨酸转运循环需要氧化过程来发挥功能。这些提出的替代循环在能量上比谷氨酸 - 谷氨酰胺循环更高效,并且包含一种将氮从突触前神经元转运到星形胶质细胞以支持PAG和GS协调活动的内在机制,而谷氨酸 - 谷氨酰胺循环中不存在这种机制。鉴于这些新阐述的替代循环,预先假定体内突触神经传递中的功能性谷氨酸转运仅由谷氨酸 - 谷氨酰胺循环维持还为时过早。