Suppr超能文献

脉冲超声空化治疗(组织粉碎术)中产生的气泡云的高速成像

High speed imaging of bubble clouds generated in pulsed ultrasound cavitational therapy--histotripsy.

作者信息

Xu Zhen, Raghavan Mekhala, Hall Timothy L, Chang Ching-Wei, Mycek Mary-Ann, Fowlkes J Brian, Cain Charles A

机构信息

Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Oct;54(10):2091-101. doi: 10.1109/tuffc.2007.504.

Abstract

Our recent studies have demonstrated that mechanical fractionation of tissue structure with sharply demarcated boundaries can be achieved using short (< 20 micros), high intensity ultrasound pulses delivered at low duty cycles. We have called this technique histotripsy. Histotripsy has potential clinical applications where noninvasive tissue fractionation and/or tissue removal are desired. The primary mechanism of histotripsy is thought to be acoustic cavitation, which is supported by a temporally changing acoustic backscatter observed during the histotripsy process. In this paper, a fast-gated digital camera was used to image the hypothesized cavitating bubble cloud generated by histotripsy pulses. The bubble cloud was produced at a tissue-water interface and inside an optically transparent gelatin phantom which mimics bulk tissue. The imaging shows the following: (1) Initiation of a temporally changing acoustic backscatter was due to the formation of a bubble cloud; (2) The pressure threshold to generate a bubble cloud was lower at a tissue-fluid interface than inside bulk tissue; and (3) at higher pulse pressure, the bubble cloud lasted longer and grew larger. The results add further support to the hypothesis that the histotripsy process is due to a cavitating bubble cloud and may provide insight into the sharp boundaries of histotripsy lesions.

摘要

我们最近的研究表明,使用低占空比下短(<20微秒)、高强度超声脉冲能够实现对具有清晰界定边界的组织结构进行机械分离。我们将此技术称为组织粉碎术。组织粉碎术在需要无创组织分离和/或组织去除的临床应用中具有潜力。组织粉碎术的主要机制被认为是声空化,这在组织粉碎术过程中观察到的随时间变化的声学后向散射中得到了支持。在本文中,使用了一台快速门控数码相机对由组织粉碎术脉冲产生的假定空化泡云进行成像。泡云在组织 - 水界面以及模仿大块组织的光学透明明胶模型内部产生。成像结果显示如下:(1)随时间变化的声学后向散射的起始是由于泡云的形成;(2)在组织 - 流体界面处产生泡云的压力阈值低于大块组织内部;(3)在更高的脉冲压力下,泡云持续时间更长且体积更大。这些结果进一步支持了组织粉碎术过程是由于空化泡云的假说,并可能为深入了解组织粉碎术损伤的清晰边界提供见解。

相似文献

5
Acoustic Methods for Increasing the Cavitation Initiation Pressure Threshold.提高空化起始压力阈值的声学方法。
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Nov;65(11):2012-2019. doi: 10.1109/TUFFC.2018.2867793. Epub 2018 Aug 29.

引用本文的文献

3
Mechanisms of nuclei growth in ultrasound bubble nucleation.超声空化核中核的生长机制。
Ultrason Sonochem. 2022 Aug;88:106091. doi: 10.1016/j.ultsonch.2022.106091. Epub 2022 Jul 6.
10
Enhanced Shock Scattering Histotripsy With Pseudomonopolar Ultrasound Pulses.增强型冲击波散射 Histotripsy 与假单极超声脉冲。
IEEE Trans Ultrason Ferroelectr Freq Control. 2019 Jul;66(7):1185-1197. doi: 10.1109/TUFFC.2019.2911289. Epub 2019 Apr 15.

本文引用的文献

2
Tests of backscatter coefficient measurement using broadband pulses.使用宽带脉冲进行后向散射系数测量的测试。
IEEE Trans Ultrason Ferroelectr Freq Control. 1993;40(5):603-7. doi: 10.1109/58.238114.
8
Pulsed cavitational ultrasound therapy for controlled tissue homogenization.
Ultrasound Med Biol. 2006 Jan;32(1):115-29. doi: 10.1016/j.ultrasmedbio.2005.09.005.
9
Investigation of intensity thresholds for ultrasound tissue erosion.超声组织侵蚀强度阈值的研究。
Ultrasound Med Biol. 2005 Dec;31(12):1673-82. doi: 10.1016/j.ultrasmedbio.2005.07.016.
10
Bubble-based acoustic radiation force elasticity imaging.基于气泡的声辐射力弹性成像。
IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Jun;52(6):971-9. doi: 10.1109/tuffc.2005.1504019.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验