Boxma Brigitte, Ricard Guenola, van Hoek Angela H A M, Severing Edouard, Moon-van der Staay Seung-Yeo, van der Staay Georg W M, van Alen Theo A, de Graaf Rob M, Cremers Geert, Kwantes Michiel, McEwan Neil R, Newbold C Jamie, Jouany Jean-Pierre, Michalowski Tadeusz, Pristas Peter, Huynen Martijn A, Hackstein Johannes H P
Department of Evolutionary Microbiology, Faculty of Science, Radboud University Nijmegen, Toernooiveld 1, NL-6525 ED Nijmegen, The Netherlands.
BMC Evol Biol. 2007 Nov 16;7:230. doi: 10.1186/1471-2148-7-230.
The hydrogenosomes of the anaerobic ciliate Nyctotherus ovalis show how mitochondria can evolve into hydrogenosomes because they possess a mitochondrial genome and parts of an electron-transport chain on the one hand, and a hydrogenase on the other hand. The hydrogenase permits direct reoxidation of NADH because it consists of a [FeFe] hydrogenase module that is fused to two modules, which are homologous to the 24 kDa and the 51 kDa subunits of a mitochondrial complex I.
The [FeFe] hydrogenase belongs to a clade of hydrogenases that are different from well-known eukaryotic hydrogenases. The 24 kDa and the 51 kDa modules are most closely related to homologous modules that function in bacterial [NiFe] hydrogenases. Paralogous, mitochondrial 24 kDa and 51 kDa modules function in the mitochondrial complex I in N. ovalis. The different hydrogenase modules have been fused to form a polyprotein that is targeted into the hydrogenosome.
The hydrogenase and their associated modules have most likely been acquired by independent lateral gene transfer from different sources. This scenario for a concerted lateral gene transfer is in agreement with the evolution of the hydrogenosome from a genuine ciliate mitochondrion by evolutionary tinkering.
厌氧纤毛虫卵形夜毛虫的氢化酶体展示了线粒体如何演变成氢化酶体,因为它们一方面拥有线粒体基因组和部分电子传递链,另一方面拥有氢化酶。该氢化酶可使NADH直接再氧化,因为它由一个[FeFe]氢化酶模块与另外两个模块融合而成,这两个模块与线粒体复合体I的24 kDa和51 kDa亚基同源。
[FeFe]氢化酶属于一类与知名真核氢化酶不同的氢化酶。24 kDa和51 kDa模块与在细菌[NiFe]氢化酶中起作用的同源模块关系最为密切。卵形夜毛虫线粒体中的同源24 kDa和51 kDa模块在线粒体复合体I中发挥作用。不同的氢化酶模块已融合形成一种多蛋白,该多蛋白被靶向输送到氢化酶体中。
氢化酶及其相关模块很可能是通过从不同来源进行独立的横向基因转移而获得的。这种协同横向基因转移的情况与通过进化修补使氢化酶体从真正的纤毛虫线粒体进化而来的过程相一致。