Suppr超能文献

单通道睡眠脑电图的自动分析:在健康个体中的验证

Automatic analysis of single-channel sleep EEG: validation in healthy individuals.

作者信息

Berthomier Christian, Drouot Xavier, Herman-Stoïca Maria, Berthomier Pierre, Prado Jacques, Bokar-Thire Djibril, Benoit Odile, Mattout Jérémie, d'Ortho Marie-Pia

机构信息

PHYSIP SA, Paris, France.

出版信息

Sleep. 2007 Nov;30(11):1587-95. doi: 10.1093/sleep/30.11.1587.

Abstract

STUDY OBJECTIVE

To assess the performance of automatic sleep scoring software (ASEEGA) based on a single EEG channel comparatively with manual scoring (2 experts) of conventional full polysomnograms.

DESIGN

Polysomnograms from 15 healthy individuals were scored by 2 independent experts using conventional R&K rules. The results were compared to those of ASEEGA scoring on an epoch-by-epoch basis.

SETTING

Sleep laboratory in the physiology department of a teaching hospital.

PARTICIPANTS

Fifteen healthy volunteers.

MEASUREMENTS AND RESULTS

The epoch-by-epoch comparison was based on classifying into 2 states (wake/sleep), 3 states (wake/REM/ NREM), 4 states (wake/REM/stages 1-2/SWS), or 5 states (wake/REM/ stage 1/stage 2/SWS). The obtained overall agreements, as quantified by the kappa coefficient, were 0.82, 0.81, 0.75, and 0.72, respectively. Furthermore, obtained agreements between ASEEGA and the expert consensual scoring were 96.0%, 92.1%, 84.9%, and 82.9%, respectively. Finally, when classifying into 5 states, the sensitivity and positive predictive value of ASEEGA regarding wakefulness were 82.5% and 89.7%, respectively. Similarly, sensitivity and positive predictive value regarding REM state were 83.0% and 89.1%.

CONCLUSIONS

Our results establish the face validity and convergent validity of ASEEGA for single-channel sleep analysis in healthy individuals. ASEEGA appears as a good candidate for diagnostic aid and automatic ambulant scoring.

摘要

研究目的

比较基于单通道脑电图(EEG)的自动睡眠评分软件(ASEEGA)与传统全夜多导睡眠图人工评分(由2位专家进行)的性能。

设计

15名健康个体的多导睡眠图由2位独立专家按照传统的R&K规则进行评分。将结果与ASEEGA逐段评分结果进行比较。

地点

一家教学医院生理科的睡眠实验室。

参与者

15名健康志愿者。

测量与结果

逐段比较基于将睡眠分为2种状态(清醒/睡眠)、3种状态(清醒/快速眼动睡眠/非快速眼动睡眠)、4种状态(清醒/快速眼动睡眠/1-2期睡眠/慢波睡眠)或5种状态(清醒/快速眼动睡眠/1期睡眠/2期睡眠/慢波睡眠)。通过kappa系数量化得到的总体一致性分别为0.82、0.81、0.75和0.72。此外,ASEEGA与专家共识评分之间的一致性分别为96.0%、92.1%、84.9%和82.9%。最后,在分为5种状态时,ASEEGA对清醒状态的敏感性和阳性预测值分别为82.5%和89.7%。同样,对快速眼动睡眠状态的敏感性和阳性预测值分别为83.0%和89.1%。

结论

我们的结果确立了ASEEGA在健康个体单通道睡眠分析中的表面效度和收敛效度。ASEEGA似乎是诊断辅助和自动动态评分的良好候选工具。

相似文献

1
Automatic analysis of single-channel sleep EEG: validation in healthy individuals.
Sleep. 2007 Nov;30(11):1587-95. doi: 10.1093/sleep/30.11.1587.
2
The Visual Scoring of Sleep in Infants 0 to 2 Months of Age.
J Clin Sleep Med. 2016 Mar;12(3):429-45. doi: 10.5664/jcsm.5600.
5
Visual and computer-based detection of slow eye movements in overnight and 24-h EOG recordings.
Clin Neurophysiol. 2007 May;118(5):1122-33. doi: 10.1016/j.clinph.2007.01.014. Epub 2007 Mar 23.
6
Automatic analysis of single-channel sleep EEG in a large spectrum of sleep disorders.
J Clin Sleep Med. 2021 Mar 1;17(3):393-402. doi: 10.5664/jcsm.8864.
7
Scoring of sleep and wakefulness by behavioral analysis from video recordings in rhesus monkeys: comparison with conventional EEG analysis.
Electroencephalogr Clin Neurophysiol. 1998 Mar;106(3):206-12. doi: 10.1016/s0013-4694(97)00152-1.
8
9
Automatic sleep stage classification using two-channel electro-oculography.
J Neurosci Methods. 2007 Oct 15;166(1):109-15. doi: 10.1016/j.jneumeth.2007.06.016. Epub 2007 Jun 28.

引用本文的文献

1
A performance validation of six commercial wrist-worn wearable sleep-tracking devices for sleep stage scoring compared to polysomnography.
Sleep Adv. 2025 Mar 22;6(2):zpaf021. doi: 10.1093/sleepadvances/zpaf021. eCollection 2025 Apr.
2
Threshold Values of Sleep Spindles Features in Healthy Adults Using Scalp-EEG and Associations With Sleep Parameters.
Ann Clin Transl Neurol. 2025 Jun;12(6):1276-1291. doi: 10.1002/acn3.70055. Epub 2025 Apr 21.
3
4
Explainable vision transformer for automatic visual sleep staging on multimodal PSG signals.
NPJ Digit Med. 2025 Jan 25;8(1):55. doi: 10.1038/s41746-024-01378-0.
5
Impact of Varying Sleep Pressure on Daytime Sleep Propensity in Healthy Young and Older Adults.
Clocks Sleep. 2025 Jan 2;7(1):2. doi: 10.3390/clockssleep7010002.
6
7
Performance Investigation of Somfit Sleep Staging Algorithm.
Nat Sci Sleep. 2024 Jul 22;16:1027-1043. doi: 10.2147/NSS.S463026. eCollection 2024.
9
An Autonomous Sleep-Stage Detection Technique in Disruptive Technology Environment.
Sensors (Basel). 2024 Feb 12;24(4):1197. doi: 10.3390/s24041197.

本文引用的文献

1
Comparison of manual sleep staging with automated neural network-based analysis in clinical practice.
Med Biol Eng Comput. 2006 Mar;44(1-2):105-10. doi: 10.1007/s11517-005-0002-4.
2
Power and coherent oscillations distinguish REM sleep, stage 1 and wakefulness.
Int J Psychophysiol. 2006 Apr;60(1):59-66. doi: 10.1016/j.ijpsycho.2005.05.004. Epub 2005 Jul 5.
7
Computer based sleep recording and analysis.
Sleep Med Rev. 2000 Apr;4(2):131-148. doi: 10.1053/smrv.1999.0087.
8
Computer-assisted sleep staging.
IEEE Trans Biomed Eng. 2001 Dec;48(12):1412-23. doi: 10.1109/10.966600.
9
Reliability of scoring respiratory disturbance indices and sleep staging.
Sleep. 1998 Nov 1;21(7):749-57. doi: 10.1093/sleep/21.7.749.
10
Automatic sleep EEG analysis using filter banks.
Biomed Sci Instrum. 1999;35:241-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验