Suppr超能文献

具有质量效应的生物物理脑肿瘤生长模型的多图谱校准

Multiatlas Calibration of Biophysical Brain Tumor Growth Models with Mass Effect.

作者信息

Subramanian Shashank, Scheufele Klaudius, Himthani Naveen, Biros George

机构信息

Oden Institute, University of Texas at Austin, 201 E. 24th Street, Austin, TX, USA.

出版信息

Med Image Comput Comput Assist Interv. 2020 Oct;12262:551-560. doi: 10.1007/978-3-030-59713-9_53. Epub 2020 Sep 29.

Abstract

We present a method for the calibration of partial differential equation (PDE) models of glioblastoma (GBM) growth with the deformation of brain tissue due to the tumor. We quantify the mass effect, tumor tumor and the localized from a multiparameteric Magnetic Resonance Imaging (mpMRI) patient scan. The PDE is a reaction-advection-diffusion partial differential equation coupled with linear elasticity equations to capture mass effect. The single-scan calibration model is notoriously difficult because the precancerous (healthy) brain anatomy is unknown. To solve this inherently ill-posed and illconditioned optimization problem, we introduce a novel inversion scheme that uses as proxies for the healthy precancer patient brain resulting in robust and reliable parameter estimation. We apply our method on both synthetic and clinical datasets representative of the heterogeneous spatial landscape typically observed in glioblastomas to demonstrate the validity and performance of our methods. In the synthetic data, we report calibration errors (due to the ill-posedness and our solution scheme) in the 10%-20% range. In the clinical data, we report good quantitative agreement with the observed tumor and qualitative agreement with the mass effect (for which we do not have a ground truth). Our method uses a minimal set of parameters and provides both global and local quantitative measures of tumor infiltration and mass effect.

摘要

我们提出了一种用于校准胶质母细胞瘤(GBM)生长的偏微分方程(PDE)模型的方法,该模型考虑了肿瘤导致的脑组织变形。我们通过多参数磁共振成像(mpMRI)患者扫描来量化质量效应、肿瘤-肿瘤相互作用以及局部影响。该PDE是一个反应-对流-扩散偏微分方程,与线性弹性方程耦合以捕捉质量效应。单扫描校准模型非常困难,因为癌前(健康)脑解剖结构未知。为了解决这个本质上不适定和病态的优化问题,我们引入了一种新颖的反演方案,该方案使用健康癌前患者大脑的代理来实现稳健且可靠的参数估计。我们将我们的方法应用于代表胶质母细胞瘤中通常观察到的异质空间格局的合成数据集和临床数据集,以证明我们方法的有效性和性能。在合成数据中,我们报告校准误差(由于不适定性和我们的解决方案)在10%-20%的范围内。在临床数据中,我们报告与观察到的肿瘤有良好的定量一致性,与质量效应有定性一致性(对此我们没有地面真值)。我们的方法使用最少的参数集,并提供肿瘤浸润和质量效应的全局和局部定量测量。

相似文献

1
Multiatlas Calibration of Biophysical Brain Tumor Growth Models with Mass Effect.具有质量效应的生物物理脑肿瘤生长模型的多图谱校准
Med Image Comput Comput Assist Interv. 2020 Oct;12262:551-560. doi: 10.1007/978-3-030-59713-9_53. Epub 2020 Sep 29.
2
Ensemble Inversion for Brain Tumor Growth Models With Mass Effect.具有质量效应的脑肿瘤生长模型的集成反演。
IEEE Trans Med Imaging. 2023 Apr;42(4):982-995. doi: 10.1109/TMI.2022.3221913. Epub 2023 Apr 3.
5
IMAGE-DRIVEN BIOPHYSICAL TUMOR GROWTH MODEL CALIBRATION.图像驱动的生物物理肿瘤生长模型校准
SIAM J Sci Comput. 2020;42(3):B549-B580. doi: 10.1137/19M1275280. Epub 2020 May 6.
7
Coupling brain-tumor biophysical models and diffeomorphic image registration.耦合脑肿瘤生物物理模型与微分同胚图像配准
Comput Methods Appl Mech Eng. 2019 Apr 15;347:533-567. doi: 10.1016/j.cma.2018.12.008. Epub 2019 Jan 7.

引用本文的文献

4
Ensemble Inversion for Brain Tumor Growth Models With Mass Effect.具有质量效应的脑肿瘤生长模型的集成反演。
IEEE Trans Med Imaging. 2023 Apr;42(4):982-995. doi: 10.1109/TMI.2022.3221913. Epub 2023 Apr 3.

本文引用的文献

3
Coupling brain-tumor biophysical models and diffeomorphic image registration.耦合脑肿瘤生物物理模型与微分同胚图像配准
Comput Methods Appl Mech Eng. 2019 Apr 15;347:533-567. doi: 10.1016/j.cma.2018.12.008. Epub 2019 Jan 7.
5
The 2019 mathematical oncology roadmap.2019 年数学肿瘤学路线图。
Phys Biol. 2019 Jun 19;16(4):041005. doi: 10.1088/1478-3975/ab1a09.
9
GLISTR: glioma image segmentation and registration.GLISTR:脑胶质瘤图像分割与配准。
IEEE Trans Med Imaging. 2012 Oct;31(10):1941-54. doi: 10.1109/TMI.2012.2210558. Epub 2012 Aug 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验