Mavri Janez, Liu Hanbin, Olsson Mats H M, Warshel Arieh
National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia.
J Phys Chem B. 2008 May 15;112(19):5950-4. doi: 10.1021/jp0758420. Epub 2007 Dec 11.
The ability of using wave function propagation approaches to simulate isotope effects in enzymes is explored, focusing on the large H/D kinetic isotope effect of soybean lipoxygenase-1 (SLO-1). The H/D kinetic isotope effect (KIE) is calculated as the ratio of the rate constants for hydrogen and deuterium transfer. The rate constants are calculated from the time course of the H and D nuclear wave functions. The propagations are done using one-dimensional proton potentials generated as sections from the full multidimensional surface of the reacting system in the protein. The sections are obtained during a classical empirical valence bond (EVB) molecular dynamics simulation of SLO-1. Since the propagations require an extremely long time for treating realistic activation barriers, it is essential to use an effective biasing approach. Thus, we develop here an approach that uses the classical quantum path (QCP) method to evaluate the quantum free energy change associated with the biasing potential. This approach provides an interesting alternative to full QCP simulations and to other current approaches for simulating isotope effects in proteins. In particular, this approach can be used to evaluate the quantum mechanical transmission factor or other dynamical effects, while still obtaining reliable quantized activation free energies due to the QCP correction.
本文探讨了使用波函数传播方法模拟酶中同位素效应的能力,重点关注大豆脂氧合酶-1(SLO-1)的大H/D动力学同位素效应。H/D动力学同位素效应(KIE)计算为氢和氘转移速率常数的比值。速率常数由H和D核波函数的时间进程计算得出。传播过程使用从蛋白质中反应系统的完整多维表面截取的一维质子势来进行。这些截面是在SLO-1的经典经验价键(EVB)分子动力学模拟过程中获得的。由于处理实际的活化势垒时传播需要极长的时间,因此使用有效的偏置方法至关重要。因此,我们在此开发了一种方法,该方法使用经典量子路径(QCP)方法来评估与偏置势相关的量子自由能变化。这种方法为完整的QCP模拟和其他当前模拟蛋白质中同位素效应的方法提供了一种有趣的替代方案。特别是,这种方法可用于评估量子力学透射因子或其他动力学效应,同时由于QCP校正仍能获得可靠的量子化活化自由能。