Suppr超能文献

电压激活钾通道变构通讯轨迹上能量偶联的潜在原理。

Principles underlying energetic coupling along an allosteric communication trajectory of a voltage-activated K+ channel.

作者信息

Sadovsky Evgeniya, Yifrach Ofer

机构信息

Department of Life Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.

出版信息

Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):19813-8. doi: 10.1073/pnas.0708120104. Epub 2007 Dec 5.

Abstract

The information flow between distal elements of a protein may rely on allosteric communication trajectories lying along the protein's tertiary or quaternary structure. To unravel the underlying features of energy parsing along allosteric pathways in voltage-gated K(+) channels, high-order thermodynamic coupling analysis was performed. We report that such allosteric trajectories are functionally conserved and delineated by well defined boundaries. Moreover, allosteric trajectories assume a hierarchical organization whereby increasingly stronger layers of cooperative residue interactions act to ensure efficient and cooperative long-range coupling between distal channel regions. Such long-range communication is brought about by a coupling of local and global conformational changes, suggesting that the allosteric trajectory also corresponds to a pathway of physical deformation. Supported by theoretical analyses and analogy to studies analyzing the contribution of long-range residue coupling to protein stability, we propose that such experimentally derived trajectory features are a general property of allosterically regulated proteins.

摘要

蛋白质远端元件之间的信息流可能依赖于沿蛋白质三级或四级结构的变构通讯轨迹。为了揭示电压门控钾通道变构途径中能量解析的潜在特征,我们进行了高阶热力学耦合分析。我们报告称,这种变构轨迹在功能上是保守的,并由明确的边界划定。此外,变构轨迹呈现出一种层次结构,即越来越强的协同残基相互作用层起到确保通道远端区域之间高效协同的长程耦合的作用。这种长程通讯是由局部和全局构象变化的耦合实现的,这表明变构轨迹也对应于物理变形的途径。在理论分析以及与分析长程残基耦合对蛋白质稳定性贡献的研究类比的支持下,我们提出,这种通过实验得出的轨迹特征是变构调节蛋白的普遍特性。

相似文献

1
Principles underlying energetic coupling along an allosteric communication trajectory of a voltage-activated K+ channel.
Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):19813-8. doi: 10.1073/pnas.0708120104. Epub 2007 Dec 5.
2
Probing the transition state of the allosteric pathway of the Shaker Kv channel pore by linear free-energy relations.
J Mol Biol. 2010 Oct 22;403(2):167-73. doi: 10.1016/j.jmb.2010.08.041. Epub 2010 Sep 8.
3
Domain and interdomain energetics underlying gating in Shaker-type Kv channels.
Biophys J. 2014 Oct 21;107(8):1841-1852. doi: 10.1016/j.bpj.2014.08.015.
7
A linkage analysis toolkit for studying allosteric networks in ion channels.
J Gen Physiol. 2013 Jan;141(1):29-60. doi: 10.1085/jgp.201210859. Epub 2012 Dec 17.
8
Examining cooperative gating phenomena in voltage-dependent potassium channels: taking the energetic approach.
Methods Enzymol. 2009;466:179-209. doi: 10.1016/S0076-6879(09)66008-0. Epub 2009 Nov 13.
10
Mapping Electromechanical Coupling Pathways in Voltage-Gated Ion Channels: Challenges and the Way Forward.
J Mol Biol. 2021 Aug 20;433(17):167104. doi: 10.1016/j.jmb.2021.167104. Epub 2021 Jun 15.

引用本文的文献

1
The simplicity of protein sequence-function relationships.
Nat Commun. 2024 Sep 11;15(1):7953. doi: 10.1038/s41467-024-51895-5.
2
The simplicity of protein sequence-function relationships.
bioRxiv. 2024 Feb 7:2023.09.02.556057. doi: 10.1101/2023.09.02.556057.
4
Molecular rearrangements in S6 during slow inactivation in Shaker-IR potassium channels.
J Gen Physiol. 2023 Jul 3;155(7). doi: 10.1085/jgp.202313352. Epub 2023 May 22.
6
The allosteric gating mechanism of the MthK channel.
Natl Sci Rev. 2022 Apr 13;9(8):nwac072. doi: 10.1093/nsr/nwac072. eCollection 2022 Aug.
7
Leveraging intrinsic flexibility to engineer enhanced enzyme catalytic activity.
Proc Natl Acad Sci U S A. 2022 Jun 7;119(23):e2118979119. doi: 10.1073/pnas.2118979119. Epub 2022 Jun 3.
8
A distinct mechanism of C-type inactivation in the Kv-like KcsA mutant E71V.
Nat Commun. 2022 Mar 23;13(1):1574. doi: 10.1038/s41467-022-28866-9.

本文引用的文献

1
Probing the cavity of the slow inactivated conformation of shaker potassium channels.
J Gen Physiol. 2007 May;129(5):403-18. doi: 10.1085/jgp.200709758. Epub 2007 Apr 16.
2
Cross talk between activation and slow inactivation gates of Shaker potassium channels.
J Gen Physiol. 2006 Nov;128(5):547-59. doi: 10.1085/jgp.200609644. Epub 2006 Oct 16.
4
Molecular determinants of gating at the potassium-channel selectivity filter.
Nat Struct Mol Biol. 2006 Apr;13(4):311-8. doi: 10.1038/nsmb1069. Epub 2006 Mar 12.
6
Dynamics of the acetylcholine receptor pore at the gating transition state.
Proc Natl Acad Sci U S A. 2005 Oct 18;102(42):15069-74. doi: 10.1073/pnas.0505090102. Epub 2005 Oct 10.
7
Crystal structure of a mammalian voltage-dependent Shaker family K+ channel.
Science. 2005 Aug 5;309(5736):897-903. doi: 10.1126/science.1116269. Epub 2005 Jul 7.
9
Structural determinants of allosteric ligand activation in RXR heterodimers.
Cell. 2004 Feb 6;116(3):417-29. doi: 10.1016/s0092-8674(04)00119-9.
10
LINKED FUNCTIONS AND RECIPROCAL EFFECTS IN HEMOGLOBIN: A SECOND LOOK.
Adv Protein Chem. 1964;19:223-86. doi: 10.1016/s0065-3233(08)60190-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验