Suppr超能文献

Shaker型Kv通道门控背后的结构域和结构域间能量学

Domain and interdomain energetics underlying gating in Shaker-type Kv channels.

作者信息

Peyser Alexander, Gillespie Dirk, Roth Roland, Nonner Wolfgang

机构信息

Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, Florida; Computational Biophysics, German Research School for Simulation Sciences, Jülich, Germany; Simulation Lab Neuroscience -- Bernstein Facility Simulation and Database Technology, Institute for Advanced Simulation, Jülich Aachen Research Alliance, Forschungszentrum Jülich, Jülich, Germany.

Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois.

出版信息

Biophys J. 2014 Oct 21;107(8):1841-1852. doi: 10.1016/j.bpj.2014.08.015.

Abstract

To understand gating events with a time-base many orders-of-magnitude slower than that of atomic motion in voltage-gated ion channels such as the Shaker-type KV channels, a multiscale physical model is constructed from the experimentally well-characterized voltage-sensor (VS) domains coupled to a hydrophobic gate. The four VS domains are described by a continuum electrostatic model under voltage-clamp conditions, the control of ion flow by the gate domain is described by a vapor-lock mechanism, and the simple coupling principle is informed by known experimental results and trial-and-error. The configurational energy computed for each element is used to produce a total Hamiltonian that is a function of applied voltage, VS positions, and gate radius. We compute statistical-mechanical expectation values of macroscopic laboratory observables. This approach stands in contrast with molecular-dynamic models which are challenged by increasing scale, and kinetic models which assume a probability distribution rather than derive it from the underlying physics. This generic model predicts well the Shaker charge/voltage and conductance/voltage relations; the tight constraints underlying these results allow us to quantitatively assess the underlying physical mechanisms. The total electrical work picked up by the VS domains is an order-of-magnitude larger than the work required to actuate the gate itself, suggesting an energetic basis for the evolutionary flexibility of the voltage-gating mechanism. The cooperative slide-and-interlock behavior of the VS domains described by the VS-gate coupling relation leads to the experimentally observed bistable gating. This engineering approach should prove useful in the investigation of various elements underlying gating characteristics and degraded behavior due to mutation.

摘要

为了理解门控事件,其时间基准比诸如摇椅型钾离子通道(KV通道)等电压门控离子通道中的原子运动慢许多个数量级,我们构建了一个多尺度物理模型,该模型由实验上已充分表征的与疏水门控相连的电压传感器(VS)结构域组成。在电压钳制条件下,四个VS结构域由连续静电模型描述,门控结构域对离子流的控制由气锁机制描述,简单的耦合原理则依据已知实验结果和反复试验确定。为每个元素计算的构型能量用于生成一个总哈密顿量,它是施加电压、VS位置和门半径的函数。我们计算宏观实验室可观测量的统计力学期望值。这种方法与分子动力学模型形成对比,分子动力学模型因尺度增加而面临挑战,也与动力学模型不同,动力学模型假设概率分布而非从基础物理推导它。这个通用模型很好地预测了摇椅型通道的电荷/电压和电导/电压关系;这些结果背后的严格约束使我们能够定量评估潜在的物理机制。VS结构域收集的总电功比驱动门控本身所需的功大一个数量级,这表明电压门控机制的进化灵活性有一个能量基础。由VS-门控耦合关系描述的VS结构域的协同滑动和互锁行为导致了实验观察到的双稳态门控。这种工程方法在研究门控特性背后的各种元素以及由突变导致的退化行为方面应该会被证明是有用的。

相似文献

1
Domain and interdomain energetics underlying gating in Shaker-type Kv channels.
Biophys J. 2014 Oct 21;107(8):1841-1852. doi: 10.1016/j.bpj.2014.08.015.
4
Role of hydrophobic and ionic forces in the movement of S4 of the Shaker potassium channel.
Mol Membr Biol. 2012 Dec;29(8):321-32. doi: 10.3109/09687688.2012.710343. Epub 2012 Aug 13.
6
Electrostatic model of S4 motion in voltage-gated ion channels.
Biophys J. 2003 Nov;85(5):2854-64. doi: 10.1016/S0006-3495(03)74708-0.
9
Atomic mutagenesis in ion channels with engineered stoichiometry.
Elife. 2016 Oct 6;5:e18976. doi: 10.7554/eLife.18976.
10
High temperature sensitivity is intrinsic to voltage-gated potassium channels.
Elife. 2014 Jul 16;3:e03255. doi: 10.7554/eLife.03255.

引用本文的文献

1
Closed Formula for Transport across Constrictions.
Entropy (Basel). 2023 Mar 8;25(3):470. doi: 10.3390/e25030470.
2
Computational methods and theory for ion channel research.
Adv Phys X. 2022;7(1). doi: 10.1080/23746149.2022.2080587.

本文引用的文献

2
A limited 4 Å radial displacement of the S4-S5 linker is sufficient for internal gate closing in Kv channels.
J Biol Chem. 2012 Nov 16;287(47):40091-8. doi: 10.1074/jbc.M112.415497. Epub 2012 Sep 27.
3
Voltage sensing in ion channels: mesoscale simulations of biological devices.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jul;86(1 Pt 1):011910. doi: 10.1103/PhysRevE.86.011910. Epub 2012 Jul 11.
4
The sliding-helix voltage sensor: mesoscale views of a robust structure-function relationship.
Eur Biophys J. 2012 Sep;41(9):705-21. doi: 10.1007/s00249-012-0847-z. Epub 2012 Aug 21.
5
Drying transition in the hydrophobic gate of the GLIC channel blocks ion conduction.
Biophys J. 2012 Jul 18;103(2):219-27. doi: 10.1016/j.bpj.2012.06.003. Epub 2012 Jul 17.
6
Mechanism of voltage gating in potassium channels.
Science. 2012 Apr 13;336(6078):229-33. doi: 10.1126/science.1216533.
7
Molecular dynamics investigation of the ω-current in the Kv1.2 voltage sensor domains.
Biophys J. 2012 Jan 18;102(2):258-67. doi: 10.1016/j.bpj.2011.10.057.
8
Realistic simulation of the activation of voltage-gated ion channels.
Proc Natl Acad Sci U S A. 2012 Feb 28;109(9):3335-40. doi: 10.1073/pnas.1121094109. Epub 2012 Feb 13.
9
In search of a consensus model of the resting state of a voltage-sensing domain.
Neuron. 2011 Dec 8;72(5):713-20. doi: 10.1016/j.neuron.2011.09.024.
10
Coarse grained model for exploring voltage dependent ion channels.
Biochim Biophys Acta. 2012 Feb;1818(2):303-17. doi: 10.1016/j.bbamem.2011.07.043. Epub 2011 Aug 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验