Suppr超能文献

人体运动强度突然增加后的心输出量、氧耗量和动静脉氧差。

Cardiac output, oxygen consumption and arteriovenous oxygen difference following a sudden rise in exercise level in humans.

作者信息

De Cort S C, Innes J A, Barstow T J, Guz A

机构信息

Department of Medicine, Charing Cross Hospital, London.

出版信息

J Physiol. 1991 Sep;441:501-12. doi: 10.1113/jphysiol.1991.sp018764.

Abstract
  1. To investigate the relative contributions of increases in cardiac output and arteriovenous oxygen difference to the increase in oxygen consumption during exercise, the ventilatory and cardiovascular responses to a sudden transition from unloaded cycling to 70 or 80 W were measured in six normal healthy subjects. 2. Oxygen consumption (VO2) was measured breath-by-breath and corrected for changes in lung gas stores. Cardiac output (Q) was measured beat-by-beat using pulsed Doppler ultrasound, and blood pressure was measured beat-by-beat using a non-invasive finger cuff (Finapres). All data were calculated off-line, second-by-second. 3. Arteriovenous oxygen difference (A-VO2) was calculated from Q and VO2 using the Fick Principle. Left ventricular afterload was calculated by dividing Q by mean blood pressure. 4. The data for Q and VO2 were closely fitted by single exponential curves (mean r2 0.84 and 0.90 respectively; r is the correlation coefficient). These curves yielded mean time constants for the increases in Q and VO2 of 28 and 55 s respectively following the increase in exercise level. In each individual subject, the time course of adjustment of Q was faster than that of VO2. There was a mean lag of 15 s from the start of the new exercise level before the derived A-V O2 began to increase; the mean time constant for A-V O2 was 57 s. 5. If A-V O2 had remained constant, the observed rise in Q alone would have resulted in an average of 87% of the increase in VO2 which was observed after 5 s. If Q had remained constant, the observed increase in A-V O2 would have led to only 8% of the actual increase in VO2 after 5 s. 6. Mean and systolic blood pressure rose and afterload fell immediately after the onset of the increased workload. The time constants of the systolic blood pressure and afterload responses to exercise varied widely and ranged from 37 to 81 and 10 to 26 s respectively (n = 4). 7. We conclude that Q is responsible for most of the early increase in VO2 following a sudden increase in exercise workload. Blood pressure responses to exercise are slower than Q and VO2 responses, probably due to the rapid decrease in afterload. 8. The dominant contribution of Q to adaptation to changing workload may be physiologically important particularly in heart disease, where decreased ability to increase cardiac output may limit the capacity to cope with changing metabolic needs during everyday activities.
摘要
  1. 为研究心输出量增加和动静脉氧差增加对运动期间氧消耗增加的相对贡献,在6名正常健康受试者中测量了从无负荷骑行突然转变为70或80瓦负荷时的通气和心血管反应。2. 逐次测量氧消耗(VO₂)并针对肺气体储存量的变化进行校正。使用脉冲多普勒超声逐搏测量心输出量(Q),并使用无创手指袖带(Finapres)逐搏测量血压。所有数据均离线逐秒计算。3. 根据菲克原理,由Q和VO₂计算动静脉氧差(A-VO₂)。通过将Q除以平均血压来计算左心室后负荷。4. Q和VO₂的数据由单指数曲线紧密拟合(平均r²分别为0.84和0.90;r为相关系数)。这些曲线得出运动水平增加后Q和VO₂增加的平均时间常数分别为28秒和55秒。在每个个体受试者中,Q的调整时间进程比VO₂快。从新运动水平开始到导出的A-VO₂开始增加平均有15秒的延迟;A-VO₂的平均时间常数为57秒。5. 如果A-VO₂保持不变,仅观察到的Q的升高在5秒后将导致VO₂升高的平均值为观察到的值的87%。如果Q保持不变,观察到的A-VO₂的升高在5秒后仅导致VO₂实际升高的8%。6. 工作量增加开始后,平均血压和收缩压立即升高,后负荷下降。收缩压和后负荷对运动反应的时间常数差异很大,分别为37至81秒和10至26秒(n = 4)。7. 我们得出结论,在运动工作量突然增加后,Q是VO₂早期增加的主要原因。血压对运动的反应比Q和VO₂的反应慢,可能是由于后负荷迅速下降。8. Q对适应不断变化的工作量的主要贡献在生理上可能很重要,特别是在心脏病中,增加心输出量的能力下降可能会限制日常活动中应对不断变化的代谢需求的能力。

相似文献

5
Metabolic regulation of cardiac output during inhalation anaesthesia in dogs.犬吸入麻醉期间心输出量的代谢调节
Acta Anaesthesiol Scand. 1999 Apr;43(4):421-30. doi: 10.1034/j.1399-6576.1999.430410.x.

引用本文的文献

本文引用的文献

2
Cardiac output increase and gas exchange at start of exercise.运动开始时心输出量增加和气体交换。
J Appl Physiol Respir Environ Exerc Physiol. 1982 Jan;52(1):236-44. doi: 10.1152/jappl.1982.52.1.236.
3
Parameters of ventilatory and gas exchange dynamics during exercise.运动期间通气和气体交换动力学参数。
J Appl Physiol Respir Environ Exerc Physiol. 1982 Jun;52(6):1506-13. doi: 10.1152/jappl.1982.52.6.1506.
4
Breath-by-breath measurement of true alveolar gas exchange.逐次呼吸的真实肺泡气体交换测量。
J Appl Physiol Respir Environ Exerc Physiol. 1981 Dec;51(6):1662-75. doi: 10.1152/jappl.1981.51.6.1662.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验