Suppr超能文献

轴突伸长的物理模型:力、粘度和粘附作用决定生长模式。

A physical model of axonal elongation: force, viscosity, and adhesions govern the mode of outgrowth.

作者信息

O'Toole Matthew, Lamoureux Phillip, Miller Kyle E

机构信息

Department of Mathematics, Michigan State University, East Lansing, Michigan 48824-1115, USA.

出版信息

Biophys J. 2008 Apr 1;94(7):2610-20. doi: 10.1529/biophysj.107.117424. Epub 2008 Jan 4.

Abstract

Whether the axonal framework is stationary or moves is a central debate in cell biology. To better understand this problem, we developed a mathematical model that incorporates force generation at the growth cone, the viscoelastic properties of the axon, and adhesions between the axon and substrate. Using force-calibrated needles to apply and measure forces at the growth cone, we used docked mitochondria as markers to monitor movement of the axonal framework. We found coherent axonal transport that decreased away from the growth cone. Based on the velocity profiles of movement and the force applied at the growth cone, and by varying the attachment of the axonal shaft to the coverslip, we estimate values for the axial viscosity of the axon (3 x 10(6) +/- 2.4 x 10(6) Pa.s) and the friction coefficient for laminin/polyornithine-based adhesions along the axon (9.6 x 10(3) +/- 7.5 x 10(3) Pa.s). Our model suggests that whether axons elongate by tip growth or stretching depends on the level of force generation at the growth cone, the viscosity of the axon, and the level of adhesions along the axon.

摘要

轴突骨架是静止的还是移动的,这是细胞生物学中的一个核心争论点。为了更好地理解这个问题,我们开发了一个数学模型,该模型纳入了生长锥处的力产生、轴突的粘弹性以及轴突与底物之间的粘附。使用经过力校准的针在生长锥处施加和测量力,我们以对接的线粒体作为标记来监测轴突骨架的移动。我们发现连贯的轴突运输在远离生长锥处减少。基于移动的速度分布以及在生长锥处施加的力,并通过改变轴突轴与盖玻片的附着情况,我们估算出轴突的轴向粘度值(3×10⁶±2.4×10⁶帕·秒)以及沿轴突的基于层粘连蛋白/聚鸟氨酸的粘附的摩擦系数(9.6×10³±7.5×10³帕·秒)。我们的模型表明,轴突是通过顶端生长还是拉伸来延长,取决于生长锥处的力产生水平、轴突的粘度以及沿轴突的粘附水平。

相似文献

2
Growth and elongation within and along the axon.轴突内和沿轴突的生长和延伸。
Dev Neurobiol. 2010 Feb 15;70(3):135-49. doi: 10.1002/dneu.20764.
3
Measurement of subcellular force generation in neurons.神经元中亚细胞力产生的测量。
Biophys J. 2015 Mar 10;108(5):1027-37. doi: 10.1016/j.bpj.2015.01.021.
10
Axonal shortening and the mechanisms of axonal motility.轴突缩短与轴突运动机制
Cell Motil Cytoskeleton. 1988;9(1):48-59. doi: 10.1002/cm.970090106.

引用本文的文献

4
The role of mechanics in axonal stability and development.力学在轴突稳定性和发育中的作用。
Semin Cell Dev Biol. 2023 May 15;140:22-34. doi: 10.1016/j.semcdb.2022.06.006. Epub 2022 Jun 30.
5
Mathematical models of neuronal growth.神经元生长的数学模型。
Biomech Model Mechanobiol. 2022 Feb;21(1):89-118. doi: 10.1007/s10237-021-01539-0. Epub 2022 Jan 7.
6
Magnetically-actuated microposts stimulate axon growth.磁驱动微柱刺激轴突生长。
Biophys J. 2022 Feb 1;121(3):374-382. doi: 10.1016/j.bpj.2021.12.041. Epub 2021 Dec 31.
8
Effect of Cyclic Stretch on Neuron Reorientation and Axon Outgrowth.周期性拉伸对神经元重新定向和轴突生长的影响。
Front Bioeng Biotechnol. 2020 Dec 14;8:597867. doi: 10.3389/fbioe.2020.597867. eCollection 2020.
9
Extremely Low Forces Induce Extreme Axon Growth.极低的力会引起轴突的极度生长。
J Neurosci. 2020 Jun 24;40(26):4997-5007. doi: 10.1523/JNEUROSCI.3075-19.2020. Epub 2020 May 22.

本文引用的文献

2
Slow axonal transport: the subunit transport model.缓慢轴突运输:亚基运输模型。
Trends Cell Biol. 1997 Oct;7(10):384-8. doi: 10.1016/S0962-8924(97)01133-1.
5
7
Extreme stretch growth of integrated axons.整合轴突的极度拉伸生长。
J Neurosci. 2004 Sep 8;24(36):7978-83. doi: 10.1523/JNEUROSCI.1974-04.2004.
9
Towards a regional approach to cell mechanics.迈向细胞力学的区域研究方法。
Trends Cell Biol. 2004 Apr;14(4):160-6. doi: 10.1016/j.tcb.2004.02.003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验