Suppr超能文献

整合轴突的极度拉伸生长。

Extreme stretch growth of integrated axons.

作者信息

Pfister Bryan J, Iwata Akira, Meaney David F, Smith Douglas H

机构信息

Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.

出版信息

J Neurosci. 2004 Sep 8;24(36):7978-83. doi: 10.1523/JNEUROSCI.1974-04.2004.

Abstract

Large animals can undergo enormous growth during development, suggesting that axons in nerves and white matter tracts rapidly expand as well. Because integrated axons have no growth cones to extend from, it has been postulated that mechanical forces may stimulate axon elongation matching the growth of the animal. However, this distinct form of rapid and sustained growth of integrated axons has never been demonstrated. Here, we used a microstepper motor system to evaluate the effects of escalating rates of stretch on integrated axon tracts over days to weeks in culture. We found that axon tracts could be stretch grown at rates of 8 mm/d and reach lengths of 10 cm without disconnection. Despite dynamic and long-term elongation, stretched axons increased in caliber by 35%, while the morphology and density of cytoskeletal constituents and organelles were maintained. These data provide the first evidence that mechanical stimuli can induce extreme "stretch growth" of integrated axon tracts, far exceeding any previously observed limits of axon growth.

摘要

大型动物在发育过程中会经历巨大的生长,这表明神经和白质束中的轴突也会迅速扩张。由于完整的轴突没有生长锥可供延伸,因此有人推测机械力可能会刺激轴突伸长,以匹配动物的生长。然而,这种完整轴突快速且持续生长的独特形式从未得到证实。在这里,我们使用微步进电机系统评估了在数天至数周的培养过程中,逐渐增加的拉伸速率对完整轴突束的影响。我们发现轴突束可以以每天8毫米的速度进行拉伸生长,并且在不断裂的情况下达到10厘米的长度。尽管轴突进行了动态且长期的伸长,但拉伸后的轴突直径增加了35%,而细胞骨架成分和细胞器的形态及密度保持不变。这些数据首次证明,机械刺激可以诱导完整轴突束出现极端的“拉伸生长”,远远超过之前观察到的任何轴突生长极限。

相似文献

1
Extreme stretch growth of integrated axons.
J Neurosci. 2004 Sep 8;24(36):7978-83. doi: 10.1523/JNEUROSCI.1974-04.2004.
2
Development of transplantable nervous tissue constructs comprised of stretch-grown axons.
J Neurosci Methods. 2006 May 15;153(1):95-103. doi: 10.1016/j.jneumeth.2005.10.012. Epub 2005 Dec 5.
3
Development of a new miniaturized bioreactor for axon stretch growth.
J Integr Neurosci. 2016 Sep;15(3):365-380. doi: 10.1142/S0219635216500230. Epub 2016 Oct 3.
4
A model for stretch growth of neurons.
J Biomech. 2016 Dec 8;49(16):3934-3942. doi: 10.1016/j.jbiomech.2016.11.045. Epub 2016 Nov 18.
6
Stretch growth of integrated axon tracts: extremes and exploitations.
Prog Neurobiol. 2009 Nov;89(3):231-9. doi: 10.1016/j.pneurobio.2009.07.006. Epub 2009 Aug 5.
7
Live imaging of axon stretch growth in embryonic and adult neurons.
J Neurotrauma. 2011 Nov;28(11):2389-403. doi: 10.1089/neu.2010.1598. Epub 2011 Aug 29.
8
Stretch growth of motor axons in custom mechanobioreactors to generate long-projecting axonal constructs.
J Tissue Eng Regen Med. 2019 Nov;13(11):2040-2054. doi: 10.1002/term.2955. Epub 2019 Sep 11.
9
Developmental regulation of sensory axon regeneration in the absence of growth cones.
J Neurobiol. 2006 Dec;66(14):1630-45. doi: 10.1002/neu.20309.
10
Cytoskeletal dynamics in response to tensile loading of mammalian axons.
Cytoskeleton (Hoboken). 2010 Oct;67(10):650-65. doi: 10.1002/cm.20478.

引用本文的文献

1
Mechanodynamic brain on chip for studying human stem cell derived neuronal networks.
Sci Rep. 2025 Aug 13;15(1):29631. doi: 10.1038/s41598-025-14187-6.
2
Axonal Mechanotransduction Drives Cytoskeletal Responses to Physiological Mechanical Forces.
bioRxiv. 2025 Feb 12:2025.02.11.637689. doi: 10.1101/2025.02.11.637689.
3
Stress landscape of folding brain serves as a map for axonal pathfinding.
Nat Commun. 2025 Jan 30;16(1):1187. doi: 10.1038/s41467-025-56362-3.
4
Physical modulation and peripheral nerve regeneration: a literature review.
Cell Regen. 2024 Dec 23;13(1):32. doi: 10.1186/s13619-024-00215-9.
5
The mechanism and potential therapeutic target of piezo channels in pain.
Front Pain Res (Lausanne). 2024 Sep 27;5:1452389. doi: 10.3389/fpain.2024.1452389. eCollection 2024.
6
Arched microfluidic channel for the promotion of axonal growth performance.
iScience. 2024 Sep 4;27(10):110885. doi: 10.1016/j.isci.2024.110885. eCollection 2024 Oct 18.
7
Effects of stress-dependent growth on evolution of sulcal direction and curvature in models of cortical folding.
Brain Multiphys. 2023;4. doi: 10.1016/j.brain.2023.100065. Epub 2023 Mar 8.
8
Can repetitive mechanical motion cause structural damage to axons?
Front Mol Neurosci. 2024 Jun 7;17:1371738. doi: 10.3389/fnmol.2024.1371738. eCollection 2024.
9
Generation of contractile forces by three-dimensional bundled axonal tracts in micro-tissue engineered neural networks.
Front Mol Neurosci. 2024 Mar 25;17:1346696. doi: 10.3389/fnmol.2024.1346696. eCollection 2024.
10
Understanding, engineering, and modulating the growth of neural networks: An interdisciplinary approach.
Biophys Rev (Melville). 2021 Jun 17;2(2):021303. doi: 10.1063/5.0043014. eCollection 2021 Jun.

本文引用的文献

1
Cytoskeletal dynamics and transport in growth cone motility and axon guidance.
Neuron. 2003 Oct 9;40(2):209-27. doi: 10.1016/s0896-6273(03)00633-0.
2
Molecular mechanisms of axon guidance.
Science. 2002 Dec 6;298(5600):1959-64. doi: 10.1126/science.1072165.
3
Axonal protein synthesis provides a mechanism for localized regulation at an intermediate target.
Cell. 2002 Jul 26;110(2):223-35. doi: 10.1016/s0092-8674(02)00813-9.
4
Slow axonal transport: fast motors in the slow lane.
Curr Opin Cell Biol. 2002 Feb;14(1):58-62. doi: 10.1016/s0955-0674(01)00294-0.
5
Dynamic regulation of axon guidance.
Nat Neurosci. 2001 Nov;4 Suppl:1169-76. doi: 10.1038/nn748.
7
Slow axonal transport: stop and go traffic in the axon.
Nat Rev Mol Cell Biol. 2000 Nov;1(2):153-6. doi: 10.1038/35040102.
8
Neurofilaments are transported rapidly but intermittently in axons: implications for slow axonal transport.
J Neurosci. 2000 Sep 15;20(18):6849-61. doi: 10.1523/JNEUROSCI.20-18-06849.2000.
9
Neurotrophins and the dynamic regulation of the neuronal cytoskeleton.
J Neurobiol. 2000 Aug;44(2):159-73. doi: 10.1002/1097-4695(200008)44:2<159::aid-neu6>3.0.co;2-h.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验