Suppr超能文献

蛋白质冷变性的机制要素。

Mechanistic elements of protein cold denaturation.

作者信息

Lopez Carlos F, Darst Richard K, Rossky Peter J

机构信息

Center for Computational Molecular Sciences, Institute for Computational Engineering and Science, and Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712-1167, USA.

出版信息

J Phys Chem B. 2008 May 15;112(19):5961-7. doi: 10.1021/jp075928t. Epub 2008 Jan 9.

Abstract

Globular proteins undergo structural transitions to denatured states when sufficient thermodynamic state or chemical perturbations are introduced to their native environment. Cold denaturation is a somewhat counterintuitive phenomenon whereby proteins lose their compact folded structure as a result of a temperature drop. The currently accepted explanation for cold denaturation is based on an associated favorable change in the contact free energy between water and nonpolar groups at colder temperatures which would weaken the hydrophobic interaction and is thought to eventually allow polymer entropy to disrupt protein tertiary structure. In this paper we explore how this environmental perturbation leads to changes in the protein hydration and local motions in apomyoglobin. We do this by analyzing changes in protein hydration and protein motion from molecular dynamics simulation trajectories initially at 310 K, followed by a temperature drop to 278 K. We observe an increase in the number of solvent contacts around the protein and, in particular, distinctly around nonpolar atoms. Further analysis shows that the fluctuations of some protein atoms increase with decreasing temperature. This is accompanied by an observed increase in the isothermal compressibility of the protein, indicating an increase in the protein interior interstitial space. Closer inspection reveals that atoms with increased compressibility and larger-than-expected fluctuations are localized within the protein core regions. These results provide insight into a description of the mechanism of cold denaturation. That is, the lower temperature leads to solvent-induced packing defects at the protein surface, and this more favorable water-protein interaction in turn destabilizes the overall protein structure.

摘要

当向球状蛋白质的天然环境引入足够的热力学状态或化学扰动时,它们会发生结构转变,进入变性状态。冷变性是一种有点违反直觉的现象,即蛋白质由于温度下降而失去其紧密折叠结构。目前被广泛接受的冷变性解释是基于在较低温度下水与非极性基团之间接触自由能的有利变化,这会削弱疏水相互作用,并最终被认为会使聚合物熵破坏蛋白质三级结构。在本文中,我们探讨了这种环境扰动如何导致脱辅基肌红蛋白中蛋白质水合作用和局部运动的变化。我们通过分析最初处于310K的分子动力学模拟轨迹中蛋白质水合作用和蛋白质运动的变化来进行研究,随后温度降至278K。我们观察到蛋白质周围,特别是非极性原子周围的溶剂接触数量增加。进一步分析表明,一些蛋白质原子的波动随着温度降低而增加。这伴随着观察到的蛋白质等温压缩率的增加,表明蛋白质内部间隙空间增加。仔细观察发现,具有增加的压缩率和大于预期波动的原子位于蛋白质核心区域内。这些结果为冷变性机制的描述提供了见解。也就是说,较低的温度会导致蛋白质表面出现溶剂诱导的堆积缺陷,而这种更有利的水 - 蛋白质相互作用反过来会使整体蛋白质结构不稳定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验