Dieterich Peter, Klages Rainer, Preuss Roland, Schwab Albrecht
Institut für Physiologie, Medizinische Fakultät Carl Gustav Carus, Fetscherstrasse 74, D-01307 Dresden, Germany.
Proc Natl Acad Sci U S A. 2008 Jan 15;105(2):459-63. doi: 10.1073/pnas.0707603105. Epub 2008 Jan 8.
Cell movement--for example, during embryogenesis or tumor metastasis--is a complex dynamical process resulting from an intricate interplay of multiple components of the cellular migration machinery. At first sight, the paths of migrating cells resemble those of thermally driven Brownian particles. However, cell migration is an active biological process putting a characterization in terms of normal Brownian motion into question. By analyzing the trajectories of wild-type and mutated epithelial (transformed Madin-Darby canine kidney) cells, we show experimentally that anomalous dynamics characterizes cell migration. A superdiffusive increase of the mean squared displacement, non-Gaussian spatial probability distributions, and power-law decays of the velocity autocorrelations is the basis for this interpretation. Almost all results can be explained with a fractional Klein-Kramers equation allowing the quantitative classification of cell migration by a few parameters. Thereby, it discloses the influence and relative importance of individual components of the cellular migration apparatus to the behavior of the cell as a whole.
细胞运动——例如在胚胎发育或肿瘤转移过程中——是一个复杂的动态过程,它由细胞迁移机制的多个组成部分之间复杂的相互作用产生。乍一看,迁移细胞的路径类似于热驱动的布朗粒子的路径。然而,细胞迁移是一个活跃的生物学过程,这使得用正常布朗运动来描述它成为一个问题。通过分析野生型和突变上皮细胞(转化的马-达二氏犬肾细胞)的轨迹,我们通过实验表明,反常动力学是细胞迁移的特征。平均平方位移的超扩散增加、非高斯空间概率分布以及速度自相关的幂律衰减是这种解释的基础。几乎所有结果都可以用一个分数阶克莱因-克喇末方程来解释,该方程允许通过几个参数对细胞迁移进行定量分类。由此,它揭示了细胞迁移装置的各个组成部分对整个细胞行为的影响和相对重要性。