Suppr超能文献

通过金属微电极记录电路和滤波器的信号失真综述。

Review of signal distortion through metal microelectrode recording circuits and filters.

作者信息

Nelson Matthew J, Pouget Pierre, Nilsen Erik A, Patten Craig D, Schall Jeffrey D

机构信息

Center for Integrative & Cognitive Neuroscience, Vanderbilt Vision Research Center, Department of Psychology, Vanderbilt University, Nashville, TN, USA.

出版信息

J Neurosci Methods. 2008 Mar 30;169(1):141-57. doi: 10.1016/j.jneumeth.2007.12.010. Epub 2008 Feb 1.

Abstract

Interest in local field potentials (LFPs) and action potential shape has increased markedly. The present work describes distortions of these signals that occur for two reasons. First, the microelectrode recording circuit operates as a voltage divider producing frequency-dependent attenuation and phase shifts when electrode impedance is not negligible relative to amplifier input impedance. Because of the much higher electrode impedance at low frequencies, this occurred over frequency ranges of LFPs measured by neurophysiologists for one head-stage tested. Second, frequency-dependent phase shifts are induced by subsequent filters. Thus, we report these effects and the resulting amplitude envelope delays and distortion of waveforms recorded through a commercial data acquisition system and a range of tungsten microelectrodes. These distortions can be corrected, but must be accounted for when interpreting field potential and spike shape data.

摘要

对局部场电位(LFP)和动作电位形状的兴趣显著增加。目前的工作描述了这些信号因两个原因而出现的失真情况。首先,当电极阻抗相对于放大器输入阻抗不可忽略时,微电极记录电路充当分压器,会产生频率依赖性衰减和相位偏移。由于低频时电极阻抗要高得多,对于测试的一个前置放大器,在神经生理学家测量的LFP频率范围内就会出现这种情况。其次,后续滤波器会引起频率依赖性相位偏移。因此,我们报告了这些效应以及通过商业数据采集系统和一系列钨微电极记录的波形所产生的幅度包络延迟和失真情况。这些失真可以校正,但在解释场电位和尖峰形状数据时必须加以考虑。

相似文献

1
Review of signal distortion through metal microelectrode recording circuits and filters.
J Neurosci Methods. 2008 Mar 30;169(1):141-57. doi: 10.1016/j.jneumeth.2007.12.010. Epub 2008 Feb 1.
2
Toward a comparison of microelectrodes for acute and chronic recordings.
Brain Res. 2009 Jul 28;1282:183-200. doi: 10.1016/j.brainres.2009.05.052. Epub 2009 May 30.
3
Signal-to-noise ratio improvement in multiple electrode recording.
J Neurosci Methods. 2002 Mar 30;115(1):29-43. doi: 10.1016/s0165-0270(01)00516-7.
4
A CMOS-based microelectrode array for interaction with neuronal cultures.
J Neurosci Methods. 2007 Aug 15;164(1):93-106. doi: 10.1016/j.jneumeth.2007.04.006. Epub 2007 Apr 19.
5
Extracellular recordings from locally dense microelectrode arrays coupled to dissociated cortical cultures.
J Neurosci Methods. 2009 Mar 15;177(2):386-96. doi: 10.1016/j.jneumeth.2008.10.032. Epub 2008 Nov 5.
6
Recording spikes from a large fraction of the ganglion cells in a retinal patch.
Nat Neurosci. 2004 Oct;7(10):1154-61. doi: 10.1038/nn1323.
7
Quantifying the effects of the electrode-brain interface on the crossing electric currents in deep brain recording and stimulation.
Neuroscience. 2008 Mar 27;152(3):683-91. doi: 10.1016/j.neuroscience.2008.01.023. Epub 2008 Jan 25.
8
Automatic spike detection based on adaptive template matching for extracellular neural recordings.
J Neurosci Methods. 2007 Sep 30;165(2):165-74. doi: 10.1016/j.jneumeth.2007.05.033. Epub 2007 Jun 7.
9
Design of a twin tetrode microdrive and headstage for hippocampal single unit recordings in behaving mice.
J Neurosci Methods. 2003 Oct 30;129(2):129-34. doi: 10.1016/s0165-0270(03)00172-9.

引用本文的文献

3
Parasitic Capacitance in High-Density Neural Electrode Arrays: Sources and Evaluation Methods.
IEEE Trans Biomed Eng. 2025 Feb;72(2):794-802. doi: 10.1109/TBME.2024.3472708. Epub 2025 Jan 21.
5
Transparent, Low-Impedance Inkjet-Printed PEDOT:PSS Microelectrodes for Multi-modal Neuroscience.
Phys Status Solidi A Appl Mater Sci. 2022 May;219(10). doi: 10.1002/pssa.202100683. Epub 2022 Feb 25.
7
A novel method for dynamically altering the surface area of intracranial EEG electrodes.
J Neural Eng. 2023 Mar 7;20(2):026002. doi: 10.1088/1741-2552/acb79f.
8
Vitamin C-reduced graphene oxide improves the performance and stability of multimodal neural microelectrodes.
iScience. 2022 Jun 22;25(7):104652. doi: 10.1016/j.isci.2022.104652. eCollection 2022 Jul 15.
9
Extracellular and intracellular components of the impedance of neural tissue.
Biophys J. 2022 Mar 15;121(6):869-885. doi: 10.1016/j.bpj.2022.02.022. Epub 2022 Feb 17.
10
Electrophysiology Read-Out Tools for Brain-on-Chip Biotechnology.
Micromachines (Basel). 2021 Jan 24;12(2):124. doi: 10.3390/mi12020124.

本文引用的文献

1
Tungsten Microelectrode for Recording from Single Units.
Science. 1957 Mar 22;125(3247):549-50. doi: 10.1126/science.125.3247.549.
2
Glass Insulated Platinum Microelectrode.
Science. 1960 Nov 4;132(3436):1309-10. doi: 10.1126/science.132.3436.1309.
3
Differential attention-dependent response modulation across cell classes in macaque visual area V4.
Neuron. 2007 Jul 5;55(1):131-41. doi: 10.1016/j.neuron.2007.06.018.
4
Fast modulation of prefrontal cortex activity by basal forebrain noncholinergic neuronal ensembles.
J Neurophysiol. 2006 Dec;96(6):3209-19. doi: 10.1152/jn.00524.2006. Epub 2006 Aug 23.
5
Local field potential in cortical area MT: stimulus tuning and behavioral correlations.
J Neurosci. 2006 Jul 26;26(30):7779-90. doi: 10.1523/JNEUROSCI.5052-05.2006.
6
Analysis of LFP phase predicts sensory response of barrel cortex.
J Neurophysiol. 2006 Sep;96(3):1658-63. doi: 10.1152/jn.01288.2005. Epub 2006 Jun 14.
7
On the origin of the extracellular action potential waveform: A modeling study.
J Neurophysiol. 2006 May;95(5):3113-28. doi: 10.1152/jn.00979.2005. Epub 2006 Feb 8.
8
Object selectivity of local field potentials and spikes in the macaque inferior temporal cortex.
Neuron. 2006 Feb 2;49(3):433-45. doi: 10.1016/j.neuron.2005.12.019.
9
Gamma-band synchronization in visual cortex predicts speed of change detection.
Nature. 2006 Feb 9;439(7077):733-6. doi: 10.1038/nature04258. Epub 2005 Dec 21.
10
Encoding of movement direction in different frequency ranges of motor cortical local field potentials.
J Neurosci. 2005 Sep 28;25(39):8815-24. doi: 10.1523/JNEUROSCI.0816-05.2005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验