Chitnis Nakul, Hyman James M, Cushing Jim M
Department of Public Health and Epidemiology, Swiss Tropical Institute, Socinstrasse 57, Postfach, 4002, Basel, Switzerland.
Bull Math Biol. 2008 Jul;70(5):1272-96. doi: 10.1007/s11538-008-9299-0. Epub 2008 Feb 22.
We perform sensitivity analyses on a mathematical model of malaria transmission to determine the relative importance of model parameters to disease transmission and prevalence. We compile two sets of baseline parameter values: one for areas of high transmission and one for low transmission. We compute sensitivity indices of the reproductive number (which measures initial disease transmission) and the endemic equilibrium point (which measures disease prevalence) to the parameters at the baseline values. We find that in areas of low transmission, the reproductive number and the equilibrium proportion of infectious humans are most sensitive to the mosquito biting rate. In areas of high transmission, the reproductive number is again most sensitive to the mosquito biting rate, but the equilibrium proportion of infectious humans is most sensitive to the human recovery rate. This suggests strategies that target the mosquito biting rate (such as the use of insecticide-treated bed nets and indoor residual spraying) and those that target the human recovery rate (such as the prompt diagnosis and treatment of infectious individuals) can be successful in controlling malaria.
我们对疟疾传播的数学模型进行敏感性分析,以确定模型参数对疾病传播和流行程度的相对重要性。我们编制了两组基线参数值:一组用于高传播地区,一组用于低传播地区。我们计算繁殖数(衡量初始疾病传播)和地方病平衡点(衡量疾病流行程度)对基线值参数的敏感性指数。我们发现,在低传播地区,繁殖数和感染人类的平衡比例对蚊子叮咬率最为敏感。在高传播地区,繁殖数同样对蚊子叮咬率最为敏感,但感染人类的平衡比例对人类恢复率最为敏感。这表明,针对蚊子叮咬率的策略(如使用经杀虫剂处理的蚊帐和室内残留喷洒)以及针对人类恢复率的策略(如对感染个体进行及时诊断和治疗)在控制疟疾方面可能会取得成功。