Serrano M Angeles, Krioukov Dmitri, Boguñá Marián
Institute of Theoretical Physics, LBS, SB, EPFL, 1015 Lausanne, Switzerland.
Phys Rev Lett. 2008 Feb 22;100(7):078701. doi: 10.1103/PhysRevLett.100.078701. Epub 2008 Feb 20.
We demonstrate that the self-similarity of some scale-free networks with respect to a simple degree-thresholding renormalization scheme finds a natural interpretation in the assumption that network nodes exist in hidden metric spaces. Clustering, i.e., cycles of length three, plays a crucial role in this framework as a topological reflection of the triangle inequality in the hidden geometry. We prove that a class of hidden variable models with underlying metric spaces are able to accurately reproduce the self-similarity properties that we measured in the real networks. Our findings indicate that hidden geometries underlying these real networks are a plausible explanation for their observed topologies and, in particular, for their self-similarity with respect to the degree-based renormalization.
我们证明,一些无标度网络相对于简单的度阈值重整化方案的自相似性,在网络节点存在于隐藏度量空间这一假设中有自然的解释。聚类,即长度为三的环,在这个框架中起着关键作用,作为隐藏几何中三角不等式的拓扑反映。我们证明,一类具有基础度量空间的隐藏变量模型能够准确再现我们在真实网络中测量到的自相似性属性。我们的研究结果表明,这些真实网络背后的隐藏几何是对其观测到的拓扑结构,特别是对其相对于基于度的重整化的自相似性的一种合理的解释。