Suppr超能文献

复杂网络的自相似性与隐藏度量空间

Self-similarity of complex networks and hidden metric spaces.

作者信息

Serrano M Angeles, Krioukov Dmitri, Boguñá Marián

机构信息

Institute of Theoretical Physics, LBS, SB, EPFL, 1015 Lausanne, Switzerland.

出版信息

Phys Rev Lett. 2008 Feb 22;100(7):078701. doi: 10.1103/PhysRevLett.100.078701. Epub 2008 Feb 20.

Abstract

We demonstrate that the self-similarity of some scale-free networks with respect to a simple degree-thresholding renormalization scheme finds a natural interpretation in the assumption that network nodes exist in hidden metric spaces. Clustering, i.e., cycles of length three, plays a crucial role in this framework as a topological reflection of the triangle inequality in the hidden geometry. We prove that a class of hidden variable models with underlying metric spaces are able to accurately reproduce the self-similarity properties that we measured in the real networks. Our findings indicate that hidden geometries underlying these real networks are a plausible explanation for their observed topologies and, in particular, for their self-similarity with respect to the degree-based renormalization.

摘要

我们证明,一些无标度网络相对于简单的度阈值重整化方案的自相似性,在网络节点存在于隐藏度量空间这一假设中有自然的解释。聚类,即长度为三的环,在这个框架中起着关键作用,作为隐藏几何中三角不等式的拓扑反映。我们证明,一类具有基础度量空间的隐藏变量模型能够准确再现我们在真实网络中测量到的自相似性属性。我们的研究结果表明,这些真实网络背后的隐藏几何是对其观测到的拓扑结构,特别是对其相对于基于度的重整化的自相似性的一种合理的解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验