Lozano Sergi, Arenas Alex, Sánchez Angel
ETH Zurich, Swiss Federal Institute of Technology, Zurich, Switzerland.
PLoS One. 2008 Apr 2;3(4):e1892. doi: 10.1371/journal.pone.0001892.
We study the evolutionary Prisoner's Dilemma on two social networks substrates obtained from actual relational data.
METHODOLOGY/PRINCIPAL FINDINGS: We find very different cooperation levels on each of them that cannot be easily understood in terms of global statistical properties of both networks. We claim that the result can be understood at the mesoscopic scale, by studying the community structure of the networks. We explain the dependence of the cooperation level on the temptation parameter in terms of the internal structure of the communities and their interconnections. We then test our results on community-structured, specifically designed artificial networks, finding a good agreement with the observations in both real substrates.
Our results support the conclusion that studies of evolutionary games on model networks and their interpretation in terms of global properties may not be sufficient to study specific, real social systems. Further, the study allows us to define new quantitative parameters that summarize the mesoscopic structure of any network. In addition, the community perspective may be helpful to interpret the origin and behavior of existing networks as well as to design structures that show resilient cooperative behavior.
我们在从实际关系数据中获得的两种社会网络基质上研究进化囚徒困境。
方法/主要发现:我们发现在这两种基质上的合作水平差异很大,这无法根据两个网络的全局统计特性轻易理解。我们声称,通过研究网络的社区结构,可以在介观尺度上理解这一结果。我们根据社区的内部结构及其相互连接来解释合作水平对诱惑参数的依赖性。然后,我们在专门设计的社区结构人工网络上测试我们的结果,发现与两种真实基质中的观察结果高度吻合。
我们的结果支持这样的结论,即对模型网络上的进化博弈及其基于全局特性的解释进行研究,可能不足以研究特定的真实社会系统。此外,该研究使我们能够定义新的定量参数,以总结任何网络的介观结构。此外,从社区角度可能有助于解释现有网络的起源和行为,以及设计表现出弹性合作行为的结构。