Du Xiuxia, Callister Stephen J, Manes Nathan P, Adkins Joshua N, Alexandridis Roxana A, Zeng Xiaohua, Roh Jung Hyeob, Smith William E, Donohue Timothy J, Kaplan Samuel, Smith Richard D, Lipton Mary S
Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
J Proteome Res. 2008 Jul;7(7):2595-604. doi: 10.1021/pr0704837. Epub 2008 Apr 29.
Biological systems are in a continual state of flux, which necessitates an understanding of the dynamic nature of protein abundances. The study of protein abundance dynamics has become feasible with recent improvements in mass spectrometry-based quantitative proteomics. However, a number of challenges still remain related to how best to extract biological information from dynamic proteomics data, for example, challenges related to extraneous variability, missing abundance values, and the identification of significant temporal patterns. This paper describes a strategy that addresses these issues and demonstrates its values for analyzing temporal bottom-up proteomics data using data from a Rhodobacter sphaeroides 2.4.1 time-course study.
生物系统处于不断变化的状态,这就需要了解蛋白质丰度的动态性质。随着基于质谱的定量蛋白质组学的最新进展,蛋白质丰度动态的研究已变得可行。然而,在如何从动态蛋白质组学数据中最佳地提取生物学信息方面,仍存在一些挑战,例如与无关变异性、缺失丰度值以及识别显著时间模式相关的挑战。本文描述了一种解决这些问题的策略,并使用来自球形红细菌2.4.1时间进程研究的数据,展示了其在分析自下而上的时间蛋白质组学数据方面的价值。