Suppr超能文献

一种用于分析无标记自下而上蛋白质组学时间数据的计算策略。

A computational strategy to analyze label-free temporal bottom-up proteomics data.

作者信息

Du Xiuxia, Callister Stephen J, Manes Nathan P, Adkins Joshua N, Alexandridis Roxana A, Zeng Xiaohua, Roh Jung Hyeob, Smith William E, Donohue Timothy J, Kaplan Samuel, Smith Richard D, Lipton Mary S

机构信息

Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.

出版信息

J Proteome Res. 2008 Jul;7(7):2595-604. doi: 10.1021/pr0704837. Epub 2008 Apr 29.

Abstract

Biological systems are in a continual state of flux, which necessitates an understanding of the dynamic nature of protein abundances. The study of protein abundance dynamics has become feasible with recent improvements in mass spectrometry-based quantitative proteomics. However, a number of challenges still remain related to how best to extract biological information from dynamic proteomics data, for example, challenges related to extraneous variability, missing abundance values, and the identification of significant temporal patterns. This paper describes a strategy that addresses these issues and demonstrates its values for analyzing temporal bottom-up proteomics data using data from a Rhodobacter sphaeroides 2.4.1 time-course study.

摘要

生物系统处于不断变化的状态,这就需要了解蛋白质丰度的动态性质。随着基于质谱的定量蛋白质组学的最新进展,蛋白质丰度动态的研究已变得可行。然而,在如何从动态蛋白质组学数据中最佳地提取生物学信息方面,仍存在一些挑战,例如与无关变异性、缺失丰度值以及识别显著时间模式相关的挑战。本文描述了一种解决这些问题的策略,并使用来自球形红细菌2.4.1时间进程研究的数据,展示了其在分析自下而上的时间蛋白质组学数据方面的价值。

相似文献

1
A computational strategy to analyze label-free temporal bottom-up proteomics data.
J Proteome Res. 2008 Jul;7(7):2595-604. doi: 10.1021/pr0704837. Epub 2008 Apr 29.
2
Effects of Light Regulation on Proteome Expression in Rhodobacter sphaeroides 2.4.1.
Mol Biotechnol. 2021 May;63(5):437-445. doi: 10.1007/s12033-021-00312-z. Epub 2021 Mar 5.
4
Structural and functional proteomics of intracytoplasmic membrane assembly in Rhodobacter sphaeroides.
J Mol Microbiol Biotechnol. 2013;23(1-2):48-62. doi: 10.1159/000346520. Epub 2013 Apr 18.
6
The photosynthetic membrane proteome of Rhodobacter sphaeroides R-26.1 exposed to cobalt.
Res Microbiol. 2011 Jun;162(5):520-7. doi: 10.1016/j.resmic.2011.04.008. Epub 2011 Apr 22.
7
Current trends in computational inference from mass spectrometry-based proteomics.
Brief Bioinform. 2007 Sep;8(5):304-17. doi: 10.1093/bib/bbm023. Epub 2007 Jun 20.
8
Comparison of aerobic and photosynthetic Rhodobacter sphaeroides 2.4.1 proteomes.
J Microbiol Methods. 2006 Dec;67(3):424-36. doi: 10.1016/j.mimet.2006.04.021. Epub 2006 Jul 7.
10
Comparative differential cuproproteomes of Rhodobacter capsulatus reveal novel copper homeostasis related proteins.
Metallomics. 2020 Apr 1;12(4):572-591. doi: 10.1039/c9mt00314b. Epub 2020 Mar 9.

引用本文的文献

1
Bioinformatic Analysis of Temporal and Spatial Proteome Alternations During Infections.
Front Genet. 2021 Jul 2;12:667936. doi: 10.3389/fgene.2021.667936. eCollection 2021.
2
3
Mass spectrometric analysis of the cell surface N-glycoproteome by combining metabolic labeling and click chemistry.
J Am Soc Mass Spectrom. 2015 Apr;26(4):604-14. doi: 10.1007/s13361-014-1016-7. Epub 2014 Nov 26.
4
A universal chemical enrichment method for mapping the yeast N-glycoproteome by mass spectrometry (MS).
Mol Cell Proteomics. 2014 Jun;13(6):1563-72. doi: 10.1074/mcp.M113.036251. Epub 2014 Apr 1.
6
Putative glycosyltransferases and other plant Golgi apparatus proteins are revealed by LOPIT proteomics.
Plant Physiol. 2012 Oct;160(2):1037-51. doi: 10.1104/pp.112.204263. Epub 2012 Aug 24.
8
Correct interpretation of comprehensive phosphorylation dynamics requires normalization by protein expression changes.
Mol Cell Proteomics. 2011 Aug;10(8):M111.009654. doi: 10.1074/mcp.M111.009654. Epub 2011 May 7.
9
Regulatory response to carbon starvation in Caulobacter crescentus.
PLoS One. 2011 Apr 11;6(4):e18179. doi: 10.1371/journal.pone.0018179.
10
Proteomics: a pragmatic perspective.
Nat Biotechnol. 2010 Jul;28(7):695-709. doi: 10.1038/nbt.1658. Epub 2010 Jul 9.

本文引用的文献

1
VIPER: an advanced software package to support high-throughput LC-MS peptide identification.
Bioinformatics. 2007 Aug 1;23(15):2021-3. doi: 10.1093/bioinformatics/btm281. Epub 2007 Jun 1.
2
Quantitative proteomics by stable isotope labeling and mass spectrometry.
Methods Mol Biol. 2007;367:209-18. doi: 10.1385/1-59745-275-0:209.
5
Early events of Bacillus anthracis germination identified by time-course quantitative proteomics.
Proteomics. 2006 Oct;6(19):5199-211. doi: 10.1002/pmic.200600314.
6
Comparison of aerobic and photosynthetic Rhodobacter sphaeroides 2.4.1 proteomes.
J Microbiol Methods. 2006 Dec;67(3):424-36. doi: 10.1016/j.mimet.2006.04.021. Epub 2006 Jul 7.
8
PRISM: a data management system for high-throughput proteomics.
Proteomics. 2006 Mar;6(6):1783-90. doi: 10.1002/pmic.200500500.
10
Advances in proteomics data analysis and display using an accurate mass and time tag approach.
Mass Spectrom Rev. 2006 May-Jun;25(3):450-82. doi: 10.1002/mas.20071.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验