Suppr超能文献

具有单个双态蛋白的适应性动力学。

Adaptive dynamics with a single two-state protein.

作者信息

Csikász-Nagy Attila, Soyer Orkun S

机构信息

Microsoft Research-University of Trento Centre for Computational and Systems Biology, Piazza Manci 17, Povo (Trento), Italy.

出版信息

J R Soc Interface. 2008 Aug 6;5 Suppl 1(Suppl 1):S41-7. doi: 10.1098/rsif.2008.0099.focus.

Abstract

An important step towards understanding biological systems is to relate simple biochemical elements to dynamics. Here, we present the arguably simplest dynamical element in biochemical networks. It consists of a single protein with two states (active and inactive) and an external signal that catalyses the conversion between these two states. Further, there is steady synthesis and degradation of the inactive and active forms, respectively. As this element captures both structural and dynamical features of biochemical networks at the lowest level, we refer to it as a biochemical network unit (BioNetUnit). Using both simulations and mathematical analysis, we find that BioNetUnit shows perfect adaptation that leads to temporal responses to step changes in the incoming signal. Compared with a well-described adaptive system, which is found in bacterial chemotaxis, BioNetUnit has lower sensitivity and its adaptation time is less robust to the base signal levels. We show that these dynamical limitations lead to 'once-and-only-once' responses for certain signal sequences. These findings demonstrate that BioNetUnit is relevant in adaptive and cyclic processes. In particular, it could be seen as a generic representation for ligand-activated receptors that are desensitized upon continuous activation. The analysis of coupled BioNetUnits will show how the presented dynamics at single unit will change upon increased system complexity and how such systems would mediate biological functions.

摘要

理解生物系统的一个重要步骤是将简单的生化元素与动力学联系起来。在此,我们展示了生化网络中可以说是最简单的动力学元素。它由一种具有两种状态(活性和非活性)的单一蛋白质以及催化这两种状态之间转换的外部信号组成。此外,非活性和活性形式分别存在稳定的合成和降解过程。由于这个元素在最低层面上捕捉了生化网络的结构和动力学特征,我们将其称为生化网络单元(BioNetUnit)。通过模拟和数学分析,我们发现BioNetUnit表现出完美的适应性,能够对输入信号的阶跃变化产生时间响应。与细菌趋化作用中一个描述详尽的自适应系统相比,BioNetUnit的敏感性较低,其适应时间对基础信号水平的鲁棒性也较差。我们表明,这些动力学限制会导致对某些信号序列产生“一次且仅一次”的响应。这些发现表明BioNetUnit在自适应和循环过程中具有相关性。特别是,它可以被视为持续激活后会脱敏的配体激活受体的一种通用表示。对耦合的BioNetUnit的分析将展示随着系统复杂性增加,单个单元呈现的动力学将如何变化,以及这样的系统将如何介导生物学功能。

相似文献

1
Adaptive dynamics with a single two-state protein.
J R Soc Interface. 2008 Aug 6;5 Suppl 1(Suppl 1):S41-7. doi: 10.1098/rsif.2008.0099.focus.
2
Robustness in simple biochemical networks.
Nature. 1997 Jun 26;387(6636):913-7. doi: 10.1038/43199.
3
Perfect and near-perfect adaptation in a model of bacterial chemotaxis.
Biophys J. 2003 May;84(5):2943-56. doi: 10.1016/S0006-3495(03)70021-6.
4
Evolution of taxis responses in virtual bacteria: non-adaptive dynamics.
PLoS Comput Biol. 2008 May 23;4(5):e1000084. doi: 10.1371/journal.pcbi.1000084.
5
Systems biology of bacterial chemotaxis.
Curr Opin Microbiol. 2006 Apr;9(2):187-92. doi: 10.1016/j.mib.2006.02.007. Epub 2006 Mar 9.
7
Overview of mathematical approaches used to model bacterial chemotaxis I: the single cell.
Bull Math Biol. 2008 Aug;70(6):1525-69. doi: 10.1007/s11538-008-9321-6. Epub 2008 Jul 19.
9
A model of excitation and adaptation in bacterial chemotaxis.
Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7263-8. doi: 10.1073/pnas.94.14.7263.

引用本文的文献

1
Ultrasensitive Negative Feedback Control: A Natural Approach for the Design of Synthetic Controllers.
PLoS One. 2016 Aug 18;11(8):e0161605. doi: 10.1371/journal.pone.0161605. eCollection 2016.
2
Spatial Control of Biochemical Modification Cascades and Pathways.
Biophys J. 2015 Jun 16;108(12):2912-24. doi: 10.1016/j.bpj.2015.05.012.
3
The speed of change: towards a discontinuity theory of immunity?
Nat Rev Immunol. 2013 Oct;13(10):764-9. doi: 10.1038/nri3521. Epub 2013 Sep 2.
4
Stochastic adaptation and fold-change detection: from single-cell to population behavior.
BMC Syst Biol. 2011 Feb 3;5:22. doi: 10.1186/1752-0509-5-22.
5
Response dynamics of phosphorelays suggest their potential utility in cell signalling.
J R Soc Interface. 2011 Apr 6;8(57):480-8. doi: 10.1098/rsif.2010.0336. Epub 2010 Aug 11.
6
Adaptive response by state-dependent inactivation.
Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22558-63. doi: 10.1073/pnas.0902146106. Epub 2009 Dec 15.
8
Cell cycle regulation by feed-forward loops coupling transcription and phosphorylation.
Mol Syst Biol. 2009;5:236. doi: 10.1038/msb.2008.73. Epub 2009 Jan 20.
9
Biological switches and clocks.
J R Soc Interface. 2008 Aug 6;5 Suppl 1(Suppl 1):S1-8. doi: 10.1098/rsif.2008.0179.focus.

本文引用的文献

1
Chemotaxis in Escherichia coli: a molecular model for robust precise adaptation.
PLoS Comput Biol. 2008 Jan;4(1):e1. doi: 10.1371/journal.pcbi.0040001. Epub 2007 Nov 20.
2
Input output robustness in simple bacterial signaling systems.
Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):19931-5. doi: 10.1073/pnas.0706792104. Epub 2007 Dec 6.
4
Mathematical and computational analysis of adaptation via feedback inhibition in signal transduction pathways.
Biophys J. 2007 Aug 1;93(3):806-21. doi: 10.1529/biophysj.107.107516. Epub 2007 May 18.
5
Modeling the septation initiation network (SIN) in fission yeast cells.
Curr Genet. 2007 Apr;51(4):245-55. doi: 10.1007/s00294-007-0123-4. Epub 2007 Mar 6.
6
Temperature compensation through systems biology.
FEBS J. 2007 Feb;274(4):940-50. doi: 10.1111/j.1742-4658.2007.05641.x. Epub 2007 Jan 12.
7
The chemotactic behavior of computer-based surrogate bacteria.
Curr Biol. 2007 Jan 9;17(1):12-9. doi: 10.1016/j.cub.2006.11.027.
8
Beta-arrestin2-mediated internalization of mammalian odorant receptors.
J Neurosci. 2006 Sep 27;26(39):9902-12. doi: 10.1523/JNEUROSCI.2897-06.2006.
9
Precise adaptation in bacterial chemotaxis through "assistance neighborhoods".
Proc Natl Acad Sci U S A. 2006 Aug 29;103(35):13040-4. doi: 10.1073/pnas.0603101103. Epub 2006 Aug 21.
10
Changing cellular location of CheZ predicted by molecular simulations.
PLoS Comput Biol. 2006 Apr;2(4):e39. doi: 10.1371/journal.pcbi.0020039. Epub 2006 Apr 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验