Suppr超能文献

状态依赖失活的适应性反应。

Adaptive response by state-dependent inactivation.

机构信息

Departments of Physics, Laboratory of Network Biology Research, Technion - Israel Institute of Technology, Haifa 32000, Israel.

出版信息

Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22558-63. doi: 10.1073/pnas.0902146106. Epub 2009 Dec 15.

Abstract

Many membrane channels and receptors exhibit adaptive, or desensitized, response to a strong sustained input stimulus. A key mechanism that underlies this response is the slow, activity-dependent removal of responding molecules to a pool which is unavailable to respond immediately to the input. This mechanism is implemented in different ways in various biological systems and has traditionally been studied separately for each. Here we highlight the common aspects of this principle, shared by many biological systems, and suggest a unifying theoretical framework. We study theoretically a class of models which describes the general mechanism and allows us to distinguish its universal from system-specific features. We show that under general conditions, regardless of the details of kinetics, molecule availability encodes an averaging over past activity and feeds back multiplicatively on the system output. The kinetics of recovery from unavailability determines the effective memory kernel inside the feedback branch, giving rise to a variety of system-specific forms of adaptive response-precise or input-dependent, exponential or power-law-as special cases of the same model.

摘要

许多膜通道和受体对强持续输入刺激表现出适应性或脱敏反应。这种反应的一个关键机制是,活性依赖性地将反应分子缓慢地从一个无法立即对输入做出反应的池转移到一个池中。这种机制在不同的生物系统中以不同的方式实现,并且传统上分别对每个系统进行研究。在这里,我们强调了许多生物系统共有的这一原则的共同方面,并提出了一个统一的理论框架。我们从理论上研究了一类模型,该模型描述了一般机制,并允许我们区分其普遍特征和系统特定特征。我们表明,在一般情况下,无论动力学的细节如何,分子可用性都对过去的活动进行平均,并对系统输出进行乘法反馈。从不可用性中恢复的动力学决定了反馈分支中的有效记忆核,从而导致各种特定于系统的自适应响应形式-精确或输入依赖性,指数或幂律作为同一模型的特例。

相似文献

1
Adaptive response by state-dependent inactivation.
Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22558-63. doi: 10.1073/pnas.0902146106. Epub 2009 Dec 15.
2
Adaptive response and enlargement of dynamic range.
Math Biosci Eng. 2011 Apr;8(2):515-28. doi: 10.3934/mbe.2011.8.515.
3
Dynamical compensation in physiological circuits.
Mol Syst Biol. 2016 Nov 8;12(11):886. doi: 10.15252/msb.20167216.
4
Adaptive information processing of network modules to dynamic and spatial stimuli.
BMC Syst Biol. 2019 Mar 14;13(1):32. doi: 10.1186/s12918-019-0703-1.
5
Bridging Mechanistic and Phenomenological Models of Complex Biological Systems.
PLoS Comput Biol. 2016 May 17;12(5):e1004915. doi: 10.1371/journal.pcbi.1004915. eCollection 2016 May.
6
Slow Na+ inactivation and variance adaptation in salamander retinal ganglion cells.
J Neurosci. 2003 Feb 15;23(4):1506-16. doi: 10.1523/JNEUROSCI.23-04-01506.2003.
7
Design of biomolecular network modifications to achieve adaptation.
IET Syst Biol. 2012 Dec;6(6):223-31. doi: 10.1049/iet-syb.2011.0058.
9
The role of time delay in adaptive cellular negative feedback systems.
J Theor Biol. 2016 Jun 7;398:64-73. doi: 10.1016/j.jtbi.2016.03.008. Epub 2016 Mar 17.
10
Effects of saturation and enzyme limitation in feedforward adaptive signal transduction.
IET Syst Biol. 2011 May;5(3):208-19. doi: 10.1049/iet-syb.2010.0048.

引用本文的文献

1
Dynamical mechanisms of growth-feedback effects on adaptive gene circuits.
Elife. 2025 Jun 5;12:RP89170. doi: 10.7554/eLife.89170.
2
Stabilization of antithetic control via molecular buffering.
J R Soc Interface. 2022 Mar;19(188):20210762. doi: 10.1098/rsif.2021.0762. Epub 2022 Mar 9.
3
Discovering adaptation-capable biological network structures using control-theoretic approaches.
PLoS Comput Biol. 2022 Jan 21;18(1):e1009769. doi: 10.1371/journal.pcbi.1009769. eCollection 2022 Jan.
4
Temporal signaling, population control, and information processing through chromatin-mediated gene regulation.
J Theor Biol. 2022 Feb 21;535:110977. doi: 10.1016/j.jtbi.2021.110977. Epub 2021 Dec 14.
5
Perfect adaptation of CD8 T cell responses to constant antigen input over a wide range of affinities is overcome by costimulation.
Sci Signal. 2021 Jan 19;14(666):eaay9363. doi: 10.1126/scisignal.aay9363. Epub 2021 Jul 15.
6
Desensitisation of Notch signalling through dynamic adaptation in the nucleus.
EMBO J. 2021 Sep 15;40(18):e107245. doi: 10.15252/embj.2020107245. Epub 2021 Aug 16.
8
Network Topologies That Can Achieve Dual Function of Adaptation and Noise Attenuation.
Cell Syst. 2019 Sep 25;9(3):271-285.e7. doi: 10.1016/j.cels.2019.08.006. Epub 2019 Sep 18.
9
Adaptive feature detection from differential processing in parallel retinal pathways.
PLoS Comput Biol. 2018 Nov 20;14(11):e1006560. doi: 10.1371/journal.pcbi.1006560. eCollection 2018 Nov.
10
A biomolecular proportional integral controller based on feedback regulations of protein level and activity.
R Soc Open Sci. 2018 Feb 21;5(2):171966. doi: 10.1098/rsos.171966. eCollection 2018 Feb.

本文引用的文献

1
Adaptive transition rates in excitable membranes.
Front Comput Neurosci. 2009 Feb 10;3:2. doi: 10.3389/neuro.10.002.2009. eCollection 2009.
2
Fractional differentiation by neocortical pyramidal neurons.
Nat Neurosci. 2008 Nov;11(11):1335-42. doi: 10.1038/nn.2212. Epub 2008 Oct 19.
3
Feedback loops shape cellular signals in space and time.
Science. 2008 Oct 17;322(5900):390-5. doi: 10.1126/science.1160617.
4
Overview of mathematical approaches used to model bacterial chemotaxis I: the single cell.
Bull Math Biol. 2008 Aug;70(6):1525-69. doi: 10.1007/s11538-008-9321-6. Epub 2008 Jul 19.
5
Adaptive dynamics with a single two-state protein.
J R Soc Interface. 2008 Aug 6;5 Suppl 1(Suppl 1):S41-7. doi: 10.1098/rsif.2008.0099.focus.
6
Sensory adaptation.
Curr Opin Neurobiol. 2007 Aug;17(4):423-9. doi: 10.1016/j.conb.2007.07.001. Epub 2007 Aug 21.
7
Cell surface receptors for signal transduction and ligand transport: a design principles study.
PLoS Comput Biol. 2007 Jun;3(6):e101. doi: 10.1371/journal.pcbi.0030101. Epub 2007 Apr 20.
8
Mathematical and computational analysis of adaptation via feedback inhibition in signal transduction pathways.
Biophys J. 2007 Aug 1;93(3):806-21. doi: 10.1529/biophysj.107.107516. Epub 2007 May 18.
9
Dynamics of nonlinear feedback control.
Neural Comput. 2007 May;19(5):1179-214. doi: 10.1162/neco.2007.19.5.1179.
10
Homeostatic control of neural activity: from phenomenology to molecular design.
Annu Rev Neurosci. 2006;29:307-23. doi: 10.1146/annurev.neuro.28.061604.135751.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验