Khan Ali R, Wang Lei, Beg Mirza Faisal
School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby BC, Canada V5A 1S6.
Neuroimage. 2008 Jul 1;41(3):735-46. doi: 10.1016/j.neuroimage.2008.03.024. Epub 2008 Mar 26.
Fully-automated brain segmentation methods have not been widely adopted for clinical use because of issues related to reliability, accuracy, and limitations of delineation protocol. By combining the probabilistic-based FreeSurfer (FS) method with the Large Deformation Diffeomorphic Metric Mapping (LDDMM)-based label-propagation method, we are able to increase reliability and accuracy, and allow for flexibility in template choice. Our method uses the automated FreeSurfer subcortical labeling to provide a coarse-to-fine introduction of information in the LDDMM template-based segmentation resulting in a fully-automated subcortical brain segmentation method (FS+LDDMM). One major advantage of the FS+LDDMM-based approach is that the automatically generated segmentations generated are inherently smooth, thus subsequent steps in shape analysis can directly follow without manual post-processing or loss of detail. We have evaluated our new FS+LDDMM method on several databases containing a total of 50 subjects with different pathologies, scan sequences and manual delineation protocols for labeling the basal ganglia, thalamus, and hippocampus. In healthy controls we report Dice overlap measures of 0.81, 0.83, 0.74, 0.86 and 0.75 for the right caudate nucleus, putamen, pallidum, thalamus and hippocampus respectively. We also find statistically significant improvement of accuracy in FS+LDDMM over FreeSurfer for the caudate nucleus and putamen of Huntington's disease and Tourette's syndrome subjects, and the right hippocampus of Schizophrenia subjects.
由于可靠性、准确性以及描绘协议的局限性等问题,全自动脑部分割方法尚未在临床中广泛应用。通过将基于概率的FreeSurfer(FS)方法与基于大变形微分同胚度量映射(LDDMM)的标签传播方法相结合,我们能够提高可靠性和准确性,并在模板选择上具有灵活性。我们的方法使用自动的FreeSurfer皮质下标记,在基于LDDMM模板的分割中提供从粗到细的信息引入,从而产生一种全自动的皮质下脑部分割方法(FS+LDDMM)。基于FS+LDDMM的方法的一个主要优点是,自动生成的分割本质上是平滑的,因此形状分析的后续步骤可以直接进行,无需手动后处理或细节丢失。我们在几个数据库上评估了我们新的FS+LDDMM方法,这些数据库总共包含50名患有不同病理、扫描序列以及用于标记基底神经节、丘脑和海马体的手动描绘协议的受试者。在健康对照中,我们报告右侧尾状核、壳核、苍白球、丘脑和海马体的骰子重叠测量值分别为(0.81)、(0.83)、(0.74)、(0.86)和(0.75)。我们还发现,对于亨廷顿舞蹈症和图雷特综合症受试者的尾状核和壳核,以及精神分裂症受试者的右侧海马体,FS+LDDMM在准确性上比FreeSurfer有统计学上的显著提高。