Yang Yuedong, Zhou Yaoqi
Indiana University School of Informatics, Indiana University-Purdue University, Indianapolis, Indiana 46202, USA.
Protein Sci. 2008 Jul;17(7):1212-9. doi: 10.1110/ps.033480.107. Epub 2008 May 9.
One of the common methods for assessing energy functions of proteins is selection of native or near-native structures from decoys. This is an efficient but indirect test of the energy functions because decoy structures are typically generated either by sampling procedures or by a separate energy function. As a result, these decoys may not contain the global minimum structure that reflects the true folding accuracy of the energy functions. This paper proposes to assess energy functions by ab initio refolding of fully unfolded terminal segments with secondary structures while keeping the rest of the proteins fixed in their native conformations. Global energy minimization of these short unfolded segments, a challenging yet tractable problem, is a direct test of the energy functions. As an illustrative example, refolding terminal segments is employed to assess two closely related all-atom statistical energy functions, DFIRE (distance-scaled, finite, ideal-gas reference state) and DOPE (discrete optimized protein energy). We found that a simple sequence-position dependence contained in the DOPE energy function leads to an intrinsic bias toward the formation of helical structures. Meanwhile, a finer statistical treatment of short-range interactions yields a significant improvement in the accuracy of segment refolding by DFIRE. The updated DFIRE energy function yields success rates of 100% and 67%, respectively, for its ability to sample and fold fully unfolded terminal segments of 15 proteins to within 3.5 A global root-mean-squared distance from the corresponding native structures. The updated DFIRE energy function is available as DFIRE 2.0 upon request.
评估蛋白质能量函数的常用方法之一是从诱饵结构中选择天然或接近天然的结构。这是对能量函数的一种有效但间接的测试,因为诱饵结构通常是通过采样程序或单独的能量函数生成的。因此,这些诱饵结构可能不包含反映能量函数真实折叠准确性的全局最小结构。本文提出通过对具有二级结构的完全展开的末端片段进行从头折叠来评估能量函数,同时保持蛋白质的其余部分固定在其天然构象中。对这些短的展开片段进行全局能量最小化,这是一个具有挑战性但又易于处理的问题,是对能量函数的直接测试。作为一个示例,采用末端片段折叠来评估两个密切相关的全原子统计能量函数,DFIRE(距离缩放、有限、理想气体参考态)和DOPE(离散优化蛋白质能量)。我们发现,DOPE能量函数中包含的简单序列位置依赖性导致了对螺旋结构形成的内在偏向。同时,对短程相互作用进行更精细的统计处理,显著提高了DFIRE对片段折叠的准确性。更新后的DFIRE能量函数对15种蛋白质的完全展开末端片段进行采样和折叠,使其与相应天然结构的全局均方根距离在3.5 Å以内的成功率分别为100%和67%。如有需要,可提供更新后的DFIRE能量函数DFIRE 2.0。