Suppr超能文献

动态半刚性植入物对减压后腰段运动节段活动范围的影响。

The effect of dynamic, semi-rigid implants on the range of motion of lumbar motion segments after decompression.

作者信息

Schulte Tobias L, Hurschler Christof, Haversath Marcel, Liljenqvist Ulf, Bullmann Viola, Filler Timm J, Osada Nani, Fallenberg Eva-Maria, Hackenberg Lars

机构信息

Department of Orthopaedics, University Hospital Münster, Albert-Schweitzer-Strasse 33, 48149, Münster, Germany.

出版信息

Eur Spine J. 2008 Aug;17(8):1057-65. doi: 10.1007/s00586-008-0667-0. Epub 2008 May 21.

Abstract

Undercutting decompression is a common surgical procedure for the therapy of lumbar spinal canal stenosis. Segmental instability, due to segmental degeneration or iatrogenic decompression is a typical problem that is clinically addressed by fusion, or more recently by semi-rigid stabilization devices. The objective of this experimental biomechanical study was to investigate the influence of spinal decompression alone, as well as in conjunction with two semi-rigid stabilizing implants (Wallis, Dynesys) on the range of motion (ROM) of lumbar spine segments. A total of 21 fresh-frozen human lumbar spine motion segments were obtained. Range of motion and neutral zone (NZ) were measured in flexion-extension (FE), lateral bending (LAT) and axial rotation (ROT) for each motion segment under four conditions: (1) with all stabilizing structures intact (PHY), (2) after bilateral undercutting decompression (UDC), (3) after additional implantation of Wallis (UDC-W) and (4) after removal of Wallis and subsequent implantation of Dynesys (UDC-D). Measurements were performed using a sensor-guided industrial robot in a pure-moment-loading mode. Range of motion was defined as the angle covered between loadings of -5 and +5 Nm during the last of three applied motion cycles. Untreated physiologic segments showed the following mean ROM: FE 6.6 degrees , LAT 7.4 degrees , ROT 3.9 degrees . After decompression, a significant increase of ROM was observed: 26% FE, 6% LAT, 12% ROT. After additional implantation of a semi-rigid device, a decrease in ROM compared to the situation after decompression alone was observed with a reduction of 66 and 75% in FE, 6 and 70% in LAT, and 5 and 22% in ROT being observed for the Wallis and Dynesys, respectively. When the flexion and extension contribution to ROM was separated, the Wallis implant restricted extension by 69% and flexion by 62%, the Dynesys by 73 and 75%, respectively. Compared to the intact status, instrumentation following decompression led to a ROM reduction of 58 and 68% in FE, 1 and 68% in LAT, -6 and 13% in ROT, 61 and 65% in extension and 54 and 70% in flexion for Wallis and Dynesys. The effect of the implants on NZ corresponded to that on ROM. In conclusion, implantation of the Wallis and Dynesys devices following decompression leads to a restriction of ROM in all motion planes investigated. Flexion-extension is most affected by both implants. The Dynesys implant leads to an additional strong restriction in lateral bending. Rotation is only mildly affected by both implants. Wallis and Dynesys restrict not only isolated extension, but also flexion. These biomechanical results support the hypothesis that postoperatively, the semi-rigid implants provide a primary stabilizing function directly. Whether they can improve the clinical outcome must still be verified in prospective clinical investigations.

摘要

潜行减压术是治疗腰椎管狭窄症的一种常见外科手术。由于节段性退变或医源性减压导致的节段性不稳定是一个典型问题,临床上通常通过融合术来解决,或者最近采用半刚性稳定装置来处理。本实验性生物力学研究的目的是调查单纯脊柱减压以及联合两种半刚性稳定植入物(Wallis、Dynesys)对腰椎节段活动度(ROM)的影响。共获取了21个新鲜冷冻的人体腰椎运动节段。在四种情况下,对每个运动节段在屈伸(FE)、侧屈(LAT)和轴向旋转(ROT)时的活动度和中性区(NZ)进行测量:(1)所有稳定结构完整(PHY);(2)双侧潜行减压后(UDC);(3)额外植入Wallis后(UDC-W);(4)移除Wallis并随后植入Dynesys后(UDC-D)。使用传感器引导的工业机器人在纯力矩加载模式下进行测量。活动度定义为在三个施加的运动周期中的最后一个周期内,载荷在-5至+5 Nm之间所覆盖的角度。未经处理的生理节段的平均活动度如下:FE为6.6度,LAT为7.4度,ROT为3.9度。减压后,观察到活动度显著增加:FE增加26%,LAT增加6%,ROT增加12%。额外植入半刚性装置后,与单纯减压后的情况相比,活动度降低,观察到Wallis和Dynesys在FE中分别降低66%和75%,在LAT中分别降低6%和70%,在ROT中分别降低5%和22%。当将屈伸对活动度的贡献分开时,Wallis植入物分别将伸展限制了69%,屈曲限制了62%,Dynesys分别将伸展限制了73%和屈曲限制了75%。与完整状态相比,减压后的器械固定导致Wallis和Dynesys在FE中活动度降低58%和68%;在LAT中分别降低1%和68%;在ROT中分别降低-6%和13%;在伸展中分别降低61%和65%;在屈曲中分别降低54%和70%。植入物对中性区的影响与对活动度的影响一致。总之,减压后植入Wallis和Dynesys装置会导致在所研究的所有运动平面中活动度受限。屈伸受两种植入物的影响最大。Dynesys植入物会导致侧屈额外强烈受限。旋转仅受到两种植入物的轻微影响。Wallis和Dynesys不仅限制孤立的伸展,还限制屈曲。这些生物力学结果支持以下假设:术后,半刚性植入物直接提供主要的稳定功能。它们是否能改善临床结果仍有待前瞻性临床研究验证。

相似文献

1
The effect of dynamic, semi-rigid implants on the range of motion of lumbar motion segments after decompression.
Eur Spine J. 2008 Aug;17(8):1057-65. doi: 10.1007/s00586-008-0667-0. Epub 2008 May 21.
2
Non-fusion instrumentation of the lumbar spine with a hinged pedicle screw rod system: an in vitro experiment.
Eur Spine J. 2009 Oct;18(10):1478-85. doi: 10.1007/s00586-009-1052-3. Epub 2009 Jun 6.
6
Properties of an interspinous fixation device (ISD) in lumbar fusion constructs: a biomechanical study.
Spine J. 2013 May;13(5):572-9. doi: 10.1016/j.spinee.2013.01.042. Epub 2013 Mar 13.
7
Adjacent segment mobility after rigid and semirigid instrumentation of the lumbar spine.
Spine (Phila Pa 1976). 2009 May 20;34(12):1287-91. doi: 10.1097/BRS.0b013e3181a136ab.
8
Comparative biomechanical investigation of a modular dynamic lumbar stabilization system and the Dynesys system.
Eur Spine J. 2009 Oct;18(10):1504-11. doi: 10.1007/s00586-009-1077-7. Epub 2009 Jun 30.
9
The Dynesys lumbar spinal stabilization system: a preliminary report on positional magnetic resonance imaging findings.
Spine (Phila Pa 1976). 2007 Mar 15;32(6):685-90. doi: 10.1097/01.brs.0000257578.44134.fb.
10
Does Wallis implant reduce adjacent segment degeneration above lumbosacral instrumented fusion?
Eur Spine J. 2009 Jun;18(6):830-40. doi: 10.1007/s00586-009-0976-y. Epub 2009 Apr 23.

引用本文的文献

1
Biomechanical properties of a novel cervical spine implant with elastic deformation: a cadaveric study.
Front Bioeng Biotechnol. 2023 Aug 29;11:1214877. doi: 10.3389/fbioe.2023.1214877. eCollection 2023.
5
Finite element simulation and clinical follow-up of lumbar spine biomechanics with dynamic fixations.
PLoS One. 2017 Nov 29;12(11):e0188328. doi: 10.1371/journal.pone.0188328. eCollection 2017.
7
Clinical experiences of dynamic stabilizers: Dynesys and Dynesys top loading system for lumbar spine degenerative disease.
Kaohsiung J Med Sci. 2016 Apr;32(4):207-15. doi: 10.1016/j.kjms.2016.03.007. Epub 2016 Apr 27.
10
In Vitro Comparison of Dynesys, PEEK, and Titanium Constructs in the Lumbar Spine.
Adv Orthop. 2015;2015:895931. doi: 10.1155/2015/895931. Epub 2015 Aug 17.

本文引用的文献

1
Long-term actuarial survivorship analysis of an interspinous stabilization system.
Eur Spine J. 2007 Aug;16(8):1279-87. doi: 10.1007/s00586-007-0359-1. Epub 2007 Apr 11.
2
Biomechanical evaluation of a new total posterior-element replacement system.
Spine (Phila Pa 1976). 2006 Nov 15;31(24):2790-6; discussion 2797. doi: 10.1097/01.brs.0000245872.45554.c0.
4
Preoperative predictors for postoperative clinical outcome in lumbar spinal stenosis: systematic review.
Spine (Phila Pa 1976). 2006 Aug 15;31(18):E648-63. doi: 10.1097/01.brs.0000231727.88477.da.
6
[Lumbar spinal stenosis].
Orthopade. 2006 Jun;35(6):675-92; quiz 693-4. doi: 10.1007/s00132-006-0971-5.
7
Test protocols for evaluation of spinal implants.
J Bone Joint Surg Am. 2006 Apr;88 Suppl 2:103-9. doi: 10.2106/JBJS.E.01363.
8
Dynamic stabilization in addition to decompression for lumbar spinal stenosis with degenerative spondylolisthesis.
Spine (Phila Pa 1976). 2006 Feb 15;31(4):442-9. doi: 10.1097/01.brs.0000200092.49001.6e.
9
Influence of a dynamic stabilisation system on load bearing of a bridged disc: an in vitro study of intradiscal pressure.
Eur Spine J. 2006 Aug;15(8):1276-85. doi: 10.1007/s00586-005-0032-5. Epub 2006 Jan 21.
10
Surgery for degenerative lumbar spondylosis: updated Cochrane Review.
Spine (Phila Pa 1976). 2005 Oct 15;30(20):2312-20. doi: 10.1097/01.brs.0000182315.88558.9c.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验