Suppr超能文献

ABCC8核苷酸结合结构域1中的一个突变(R826W)降低了ATP酶活性,并导致短暂性新生儿糖尿病。

A mutation (R826W) in nucleotide-binding domain 1 of ABCC8 reduces ATPase activity and causes transient neonatal diabetes.

作者信息

de Wet Heidi, Proks Peter, Lafond Mathilde, Aittoniemi Jussi, Sansom Mark S P, Flanagan Sarah E, Pearson Ewan R, Hattersley Andrew T, Ashcroft Frances M

机构信息

Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.

出版信息

EMBO Rep. 2008 Jul;9(7):648-54. doi: 10.1038/embor.2008.71. Epub 2008 May 23.

Abstract

Activating mutations in the pore-forming Kir6.2 (KCNJ11) and regulatory sulphonylurea receptor SUR1 (ABCC8) subunits of the K(ATP) channel are a common cause of transient neonatal diabetes mellitus (TNDM). We identified a new TNDM mutation (R826W) in the first nucleotide-binding domain (NBD1) of SUR1. The mutation was found in a region that heterodimerizes with NBD2 to form catalytic site 2. Functional analysis showed that this mutation decreases MgATP hydrolysis by purified maltose-binding protein MBP-NBD1 fusion proteins. Inhibition of ATP hydrolysis by MgADP or BeF was not changed. The results indicate that the ATPase cycle lingers in the post-hydrolytic MgADP.P(i)-bound state, which is associated with channel activation. The extent of MgADP-dependent activation of K(ATP) channel activity was unaffected by the R826W mutation, but the time course of deactivation was slowed. Channel inhibition by MgATP was reduced, leading to an increase in resting whole-cell currents. In pancreatic beta cells, this would lead to less insulin secretion and thereby diabetes.

摘要

K(ATP)通道的成孔亚基Kir6.2(KCNJ11)和调节亚基磺脲类受体SUR1(ABCC8)的激活突变是短暂性新生儿糖尿病(TNDM)的常见病因。我们在SUR1的第一个核苷酸结合结构域(NBD1)中鉴定出一种新的TNDM突变(R826W)。该突变位于与NBD2异二聚化形成催化位点2的区域。功能分析表明,这种突变降低了纯化的麦芽糖结合蛋白MBP-NBD1融合蛋白的MgATP水解。MgADP或BeF对ATP水解的抑制作用没有改变。结果表明,ATP酶循环停留在水解后的MgADP.P(i)结合状态,这与通道激活有关。R826W突变不影响MgADP依赖性K(ATP)通道活性激活的程度,但失活的时间进程减慢。MgATP对通道的抑制作用减弱,导致静息全细胞电流增加。在胰腺β细胞中,这将导致胰岛素分泌减少,从而引发糖尿病。

相似文献

2
Increased ATPase activity produced by mutations at arginine-1380 in nucleotide-binding domain 2 of ABCC8 causes neonatal diabetes.
Proc Natl Acad Sci U S A. 2007 Nov 27;104(48):18988-92. doi: 10.1073/pnas.0707428104. Epub 2007 Nov 19.
3
Two neonatal diabetes mutations on transmembrane helix 15 of SUR1 increase affinity for ATP and ADP at nucleotide binding domain 2.
J Biol Chem. 2012 May 25;287(22):17985-95. doi: 10.1074/jbc.M112.349019. Epub 2012 Mar 27.
7
A heterozygous activating mutation in the sulphonylurea receptor SUR1 (ABCC8) causes neonatal diabetes.
Hum Mol Genet. 2006 Jun 1;15(11):1793-800. doi: 10.1093/hmg/ddl101. Epub 2006 Apr 13.
9
Differential nucleotide regulation of KATP channels by SUR1 and SUR2A.
J Mol Cell Cardiol. 2005 Sep;39(3):491-501. doi: 10.1016/j.yjmcc.2005.03.009.
10
Molecular basis of Kir6.2 mutations associated with neonatal diabetes or neonatal diabetes plus neurological features.
Proc Natl Acad Sci U S A. 2004 Dec 14;101(50):17539-44. doi: 10.1073/pnas.0404756101. Epub 2004 Dec 6.

引用本文的文献

1
From glucose sensing to exocytosis: takes from maturity onset diabetes of the young.
Front Endocrinol (Lausanne). 2023 May 15;14:1188301. doi: 10.3389/fendo.2023.1188301. eCollection 2023.
2
Ligand-mediated Structural Dynamics of a Mammalian Pancreatic K Channel.
J Mol Biol. 2022 Oct 15;434(19):167789. doi: 10.1016/j.jmb.2022.167789. Epub 2022 Aug 11.
4
Clinical and Genetic Characteristics of Nonneonatal Diabetes Mellitus: A Systematic Review.
J Diabetes Res. 2021 Sep 30;2021:9479268. doi: 10.1155/2021/9479268. eCollection 2021.
5
New insights into K channel gene mutations and neonatal diabetes mellitus.
Nat Rev Endocrinol. 2020 Jul;16(7):378-393. doi: 10.1038/s41574-020-0351-y. Epub 2020 May 6.
6
Targeted sequencing identifies novel variants in common and rare MODY genes.
Mol Genet Genomic Med. 2019 Dec;7(12):e962. doi: 10.1002/mgg3.962. Epub 2019 Oct 8.

本文引用的文献

1
Increased ATPase activity produced by mutations at arginine-1380 in nucleotide-binding domain 2 of ABCC8 causes neonatal diabetes.
Proc Natl Acad Sci U S A. 2007 Nov 27;104(48):18988-92. doi: 10.1073/pnas.0707428104. Epub 2007 Nov 19.
2
Structure and mechanism of ABC transporter proteins.
Curr Opin Struct Biol. 2007 Aug;17(4):412-8. doi: 10.1016/j.sbi.2007.07.003. Epub 2007 Aug 27.
3
The Walter B. Cannon Physiology in Perspective Lecture, 2007. ATP-sensitive K+ channels and disease: from molecule to malady.
Am J Physiol Endocrinol Metab. 2007 Oct;293(4):E880-9. doi: 10.1152/ajpendo.00348.2007. Epub 2007 Jul 24.
4
Studies of the ATPase activity of the ABC protein SUR1.
FEBS J. 2007 Jul;274(14):3532-3544. doi: 10.1111/j.1742-4658.2007.05879.x. Epub 2007 Jun 11.
5
Nucleotide-dependent allostery within the ABC transporter ATP-binding cassette: a computational study of the MJ0796 dimer.
J Biol Chem. 2007 Aug 3;282(31):22793-803. doi: 10.1074/jbc.M700809200. Epub 2007 May 7.
7
Structure of a bacterial multidrug ABC transporter.
Nature. 2006 Sep 14;443(7108):180-5. doi: 10.1038/nature05155. Epub 2006 Aug 30.
8
Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations.
N Engl J Med. 2006 Aug 3;355(5):467-77. doi: 10.1056/NEJMoa061759.
9
A structural analysis of asymmetry required for catalytic activity of an ABC-ATPase domain dimer.
EMBO J. 2006 Jul 26;25(14):3432-43. doi: 10.1038/sj.emboj.7601208. Epub 2006 Jul 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验