Suppr超能文献

主动学习:在没有教练的情况下学习运动技能。

Active learning: learning a motor skill without a coach.

作者信息

Huang Vincent S, Shadmehr Reza, Diedrichsen Jörn

机构信息

Laboratory for Computational Motor Control, Department of Biomedical Engineering, John Hopkins School of Medicine, Baltimore, Maryland, USA.

出版信息

J Neurophysiol. 2008 Aug;100(2):879-87. doi: 10.1152/jn.01095.2007. Epub 2008 May 28.

Abstract

When we learn a new skill (e.g., golf) without a coach, we are "active learners": we have to choose the specific components of the task on which to train (e.g., iron, driver, putter, etc.). What guides our selection of the training sequence? How do choices that people make compare with choices made by machine learning algorithms that attempt to optimize performance? We asked subjects to learn the novel dynamics of a robotic tool while moving it in four directions. They were instructed to choose their practice directions to maximize their performance in subsequent tests. We found that their choices were strongly influenced by motor errors: subjects tended to immediately repeat an action if that action had produced a large error. This strategy was correlated with better performance on test trials. However, even when participants performed perfectly on a movement, they did not avoid repeating that movement. The probability of repeating an action did not drop below chance even when no errors were observed. This behavior led to suboptimal performance. It also violated a strong prediction of current machine learning algorithms, which solve the active learning problem by choosing a training sequence that will maximally reduce the learner's uncertainty about the task. While we show that these algorithms do not provide an adequate description of human behavior, our results suggest ways to improve human motor learning by helping people choose an optimal training sequence.

摘要

当我们在没有教练的情况下学习一项新技能(例如高尔夫)时,我们就是“主动学习者”:我们必须选择要训练的任务的具体组成部分(例如铁杆、发球杆、推杆等)。是什么指导我们选择训练顺序?人们做出的选择与试图优化性能的机器学习算法所做的选择相比如何?我们要求受试者在向四个方向移动机器人工具时学习其新的动力学。他们被指示选择练习方向以在后续测试中最大化他们的表现。我们发现他们的选择受到运动误差的强烈影响:如果某个动作产生了较大误差,受试者倾向于立即重复该动作。这种策略与测试试验中的更好表现相关。然而,即使参与者在一次动作中表现完美,他们也不会避免重复该动作。即使没有观察到错误,重复一个动作的概率也不会低于随机水平。这种行为导致了次优表现。它还违背了当前机器学习算法的一个有力预测,即通过选择一个将最大程度降低学习者对任务不确定性的训练序列来解决主动学习问题。虽然我们表明这些算法不能充分描述人类行为,但我们的结果提出了通过帮助人们选择最佳训练序列来改善人类运动学习的方法。

相似文献

1
Active learning: learning a motor skill without a coach.
J Neurophysiol. 2008 Aug;100(2):879-87. doi: 10.1152/jn.01095.2007. Epub 2008 May 28.
3
Reduction of single-neuron firing uncertainty by cortical ensembles during motor skill learning.
J Neurosci. 2004 Apr 7;24(14):3574-82. doi: 10.1523/JNEUROSCI.5361-03.2004.
4
The effect of learner's control of self-observation strategies on learning of front crawl.
Acta Psychol (Amst). 2016 Feb;164:151-6. doi: 10.1016/j.actpsy.2016.01.006. Epub 2016 Jan 25.
5
The effect of haptic guidance, aging, and initial skill level on motor learning of a steering task.
Exp Brain Res. 2010 Mar;201(2):209-20. doi: 10.1007/s00221-009-2026-8. Epub 2009 Oct 10.
6
Motor Performance, Mental Workload and Self-Efficacy Dynamics during Learning of Reaching Movements throughout Multiple Practice Sessions.
Neuroscience. 2019 Dec 15;423:232-248. doi: 10.1016/j.neuroscience.2019.07.001. Epub 2019 Jul 18.
8
Somatosensory changes associated with motor skill learning.
J Neurophysiol. 2020 Mar 1;123(3):1052-1062. doi: 10.1152/jn.00497.2019. Epub 2020 Jan 29.
9
Effects of robotically modulating kinematic variability on motor skill learning and motivation.
J Neurophysiol. 2015 Apr 1;113(7):2682-91. doi: 10.1152/jn.00163.2014. Epub 2015 Feb 11.
10
OPTIMAL practice conditions enhance the benefits of gradually increasing error opportunities on retention of a stepping sequence task.
Hum Mov Sci. 2017 Dec;56(Pt B):129-138. doi: 10.1016/j.humov.2017.10.017. Epub 2017 Nov 10.

引用本文的文献

1
The Effects of Different Motor Teaching Strategies on Learning a Complex Motor Task.
Sensors (Basel). 2024 Feb 15;24(4):1231. doi: 10.3390/s24041231.
2
Surface Electromyographic Biofeedback and the Effortful Swallow Exercise for Stroke-Related Dysphagia and in Healthy Ageing.
Dysphagia. 2021 Apr;36(2):281-292. doi: 10.1007/s00455-020-10129-8. Epub 2020 May 22.
3
Self-controlled practice and nudging during structural learning of a novel control interface.
PLoS One. 2020 Apr 14;15(4):e0223810. doi: 10.1371/journal.pone.0223810. eCollection 2020.
6
7
Augmented dynamics and motor exploration as training for stroke.
IEEE Trans Biomed Eng. 2013 Mar;60(3):838-44. doi: 10.1109/TBME.2012.2192116. Epub 2012 Apr 3.
8
Principles of sensorimotor learning.
Nat Rev Neurosci. 2011 Oct 27;12(12):739-51. doi: 10.1038/nrn3112.
10
Review of control strategies for robotic movement training after neurologic injury.
J Neuroeng Rehabil. 2009 Jun 16;6:20. doi: 10.1186/1743-0003-6-20.

本文引用的文献

2
The dynamics of memory as a consequence of optimal adaptation to a changing body.
Nat Neurosci. 2007 Jun;10(6):779-86. doi: 10.1038/nn1901. Epub 2007 May 13.
3
Feedback after good trials enhances learning.
Res Q Exerc Sport. 2007 Mar;78(2):40-7. doi: 10.1080/02701367.2007.10599402.
4
Evolution of motor memory during the seconds after observation of motor error.
J Neurophysiol. 2007 Jun;97(6):3976-85. doi: 10.1152/jn.01281.2006. Epub 2007 Apr 11.
5
Should I stay or should I go? How the human brain manages the trade-off between exploitation and exploration.
Philos Trans R Soc Lond B Biol Sci. 2007 May 29;362(1481):933-42. doi: 10.1098/rstb.2007.2098.
6
Long-term effects of type of practice on the learning and transfer of a complex motor skill.
Percept Mot Skills. 2006 Dec;103(3):912-6. doi: 10.2466/pms.103.3.912-916.
8
Contextual interference effect on acquisition and retention of pistol-shooting skills.
Percept Mot Skills. 2006 Aug;103(1):241-52. doi: 10.2466/pms.103.1.241-252.
9
Cortical substrates for exploratory decisions in humans.
Nature. 2006 Jun 15;441(7095):876-9. doi: 10.1038/nature04766.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验