Miao Hongyu, Dykes Carrie, Demeter Lisa M, Wu Hulin
Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 630, Rochester, New York 14642, USA.
Biometrics. 2009 Mar;65(1):292-300. doi: 10.1111/j.1541-0420.2008.01059.x. Epub 2008 May 28.
Many biological processes and systems can be described by a set of differential equation (DE) models. However, literature in statistical inference for DE models is very sparse. We propose statistical estimation, model selection, and multimodel averaging methods for HIV viral fitness experiments in vitro that can be described by a set of nonlinear ordinary differential equations (ODE). The parameter identifiability of the ODE models is also addressed. We apply the proposed methods and techniques to experimental data of viral fitness for HIV-1 mutant 103N. We expect that the proposed modeling and inference approaches for the DE models can be widely used for a variety of biomedical studies.
许多生物过程和系统可以用一组微分方程(DE)模型来描述。然而,关于DE模型的统计推断的文献非常稀少。我们针对体外HIV病毒适应性实验提出了统计估计、模型选择和多模型平均方法,这些实验可用一组非线性常微分方程(ODE)来描述。我们还讨论了ODE模型的参数可识别性。我们将所提出的方法和技术应用于HIV-1突变体103N的病毒适应性实验数据。我们期望所提出的DE模型的建模和推断方法能够广泛应用于各种生物医学研究。