Holschneider D P, Maarek J-M I
Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, 1333 San Pablo Street, BMT 403, MC 9112, Los Angeles, CA 90033, USA.
Methods. 2008 Aug;45(4):255-61. doi: 10.1016/j.ymeth.2008.04.006. Epub 2008 Jun 11.
Brain mapping in the freely moving animal is useful for studying motor circuits, not only because it avoids the potential confound of sedation or restraints, but because activated brain states may serve to accentuate differences that only manifest partially while a subject is in the resting state. Perfusion or metabolic mapping using autoradiography allows one to examine changes in brain function at the circuit level across the entire brain with a spatial resolution (approximately 100 micro) appropriate for the rat or mouse brain, and a temporal resolution (seconds-minutes) sufficient for capturing acute brain changes. Here we summarize the application of these methods to the functional brain mapping of behaviors involving locomotion of small animals, methods for the three-dimensional reconstruction of the brain from autoradiographic sections, voxel based analysis of the whole brain, and generation of maps of the flattened rat cortex. Application of these methods in animal models promises utility in improving our understanding of motor function in the normal brain, and of the effects of neuropathology and treatment interventions such as exercise have on the reorganization of motor circuits.
在自由活动的动物中进行脑图谱研究对于研究运动回路很有用,这不仅是因为它避免了镇静或束缚带来的潜在干扰,还因为激活的脑状态可能有助于突出仅在受试者处于静息状态时部分显现的差异。使用放射自显影术进行灌注或代谢图谱分析,可以在整个大脑的回路水平上检查脑功能的变化,其空间分辨率(约100微米)适合大鼠或小鼠大脑,时间分辨率(秒 - 分钟)足以捕捉急性脑变化。在这里,我们总结了这些方法在涉及小动物运动行为的功能性脑图谱研究中的应用,从放射自显影片段进行大脑三维重建的方法,基于体素的全脑分析,以及生成扁平大鼠皮质图谱的方法。这些方法在动物模型中的应用有望有助于我们更好地理解正常大脑中的运动功能,以及神经病理学和运动等治疗干预对运动回路重组的影响。