文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

在静态磁场以及谐波磁场存在的情况下纳米颗粒磁化强度的频率分布。

Frequency distribution of the nanoparticle magnetization in the presence of a static as well as a harmonic magnetic field.

作者信息

Weaver John B, Rauwerdink Adam M, Sullivan Charles R, Baker Ian

机构信息

Department of Radiology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03756, USA.

出版信息

Med Phys. 2008 May;35(5):1988-94. doi: 10.1118/1.2903449.


DOI:10.1118/1.2903449
PMID:18561675
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4108637/
Abstract

We explore the properties of the signal from magnetic nanoparticles. The nanoparticle signal has been used to generate images in magnetic particle imaging (MPI). MPI promises to be one of the most sensitive methods of imaging small numbers magnetic nanoparticles and therefore shows promise for molecular imaging. The nanoparticle signal is generated with a pure sinusoidal magnetic field that repeatedly saturates the nanoparticles creating harmonics in the induced magnetization that are easily isolated from the driving field. Signal from a selected position is isolated using a static magnetic field to completely saturate all of the particles outside a voxel enabling an image to be formed voxel by voxel. The signal produced by the magnetization of the nanoparticles contains only odd harmonics. However, it is demonstrated experimentally that with the addition of a static magnetic field bias even harmonics are introduced which increase the total signal significantly. Further, the distribution of signal among the harmonics depends on the static bias field so that information might be used to localize the nanoparticle distribution. Finally, the field required to completely saturate nanoparticles can be quite large and theory predicts that the field required is determined by the smallest nanoparticles in the sample.

摘要

我们探究了磁性纳米颗粒信号的特性。纳米颗粒信号已被用于在磁颗粒成像(MPI)中生成图像。MPI有望成为对少量磁性纳米颗粒进行成像的最灵敏方法之一,因此在分子成像方面显示出前景。纳米颗粒信号是由一个纯正弦磁场产生的,该磁场反复使纳米颗粒饱和,从而在感应磁化强度中产生谐波,这些谐波很容易与驱动场分离。通过使用静磁场将体素外部的所有颗粒完全饱和,从而分离出选定位置的信号,进而逐体素地形成图像。纳米颗粒磁化产生的信号仅包含奇次谐波。然而,实验证明,通过添加静磁场偏置会引入偶次谐波,这会显著增加总信号。此外,谐波之间的信号分布取决于静磁场偏置,因此该信息可用于定位纳米颗粒的分布。最后,使纳米颗粒完全饱和所需的磁场可能相当大,并且理论预测所需磁场由样品中最小的纳米颗粒决定。

相似文献

[1]
Frequency distribution of the nanoparticle magnetization in the presence of a static as well as a harmonic magnetic field.

Med Phys. 2008-5

[2]
Magnetic particle imaging: introduction to imaging and hardware realization.

Z Med Phys. 2012-8-19

[3]
Size-dependent nonlinear weak-field magnetic behavior of maghemite nanoparticles.

Small. 2012-4-10

[4]
Experimental and simulation studies on the behavior of signal harmonics in magnetic particle imaging.

Radiol Phys Technol. 2013-7

[5]
Nanoparticle temperature estimation in combined ac and dc magnetic fields.

Phys Med Biol. 2009-9-9

[6]
Annealing effects on 5 nm iron oxide nanoparticles.

J Nanosci Nanotechnol. 2007-9

[7]
Growth and characterization of highly branched nanostructures of magnetic nanoparticles.

J Phys Chem B. 2006-2-23

[8]
Quantification of SPIO nanoparticles using phase gradient mapping.

Annu Int Conf IEEE Eng Med Biol Soc. 2009

[9]
[Detection method of nonlinear magnetized harmonic signal of medical magnetic nanoparticles].

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021-2-25

[10]
Enhanced pulsed magneto-motive ultrasound imaging using superparamagnetic nanoclusters.

Nanotechnology. 2010-12-15

引用本文的文献

[1]
Magnetic nanoparticles and magnetic particle spectroscopy-based bioassays: a 15 year recap.

Nano Futures. 2022-6

[2]
[Detection method of nonlinear magnetized harmonic signal of medical magnetic nanoparticles].

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021-2-25

[3]
Novel Benchtop Magnetic Particle Spectrometer for Process Monitoring of Magnetic Nanoparticle Synthesis.

Nanomaterials (Basel). 2020-11-17

[4]
Nonequilibrium Dynamics of Magnetic Nanoparticles with Applications in Biomedicine.

Adv Mater. 2021-6

[5]
Development of Magnetic Probe for Sentinel Lymph Node Detection in Laparoscopic Navigation for Gastric Cancer Patients.

Sci Rep. 2020-2-4

[6]
Benchtop magnetic particle relaxometer for detection, characterization and analysis of magnetic nanoparticles.

Phys Med Biol. 2018-9-6

[7]
Design and validation of magnetic particle spectrometer for characterization of magnetic nanoparticle relaxation dynamics.

AIP Adv. 2017-3-2

[8]
Blood clot detection using magnetic nanoparticles.

AIP Adv. 2017-2-16

[9]
Ferrohydrodynamic modeling of magnetic nanoparticle harmonic spectra for magnetic particle imaging.

J Appl Phys. 2015-11-7

[10]
The Dartmouth Center for Cancer Nanotechnology Excellence: magnetic hyperthermia.

Nanomedicine (Lond). 2015

本文引用的文献

[1]
A simulation study on the resolution and sensitivity of magnetic particle imaging.

Phys Med Biol. 2007-11-7

[2]
In vivo molecular imaging biomarkers: clinical pharmacology's new "PET"?

Clin Pharmacol Ther. 2007-6

[3]
In vivo magnetic resonance imaging of single cells in mouse brain with optical validation.

Magn Reson Med. 2006-1

[4]
Tomographic imaging using the nonlinear response of magnetic particles.

Nature. 2005-6-30

[5]
Limits of detection of SPIO at 3.0 T using T2 relaxometry.

Magn Reson Med. 2005-5

[6]
Single metallic nanoparticle imaging for protein detection in cells.

Proc Natl Acad Sci U S A. 2003-9-30

[7]
NC100150 Injection, a preparation of optimized iron oxide nanoparticles for positive-contrast MR angiography.

J Magn Reson Imaging. 2000-5

[8]
Magnetization and harmonic response of YBa2Cu3O7- delta :Ag composites.

Phys Rev B Condens Matter. 1992-1-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索