Sheng Min, Tang Ming, Chen Hui, Yang Baowei, Zhang Fengfeng, Huang Yanhui
College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China.
Mycorrhiza. 2008 Sep;18(6-7):287-96. doi: 10.1007/s00572-008-0180-7. Epub 2008 Jun 27.
The influence of arbuscular mycorrhizal (AM) fungus Glomus mosseae on characteristics of the growth, water status, chlorophyll concentration, gas exchange, and chlorophyll fluorescence of maize plants under salt stress was studied in the greenhouse. Maize plants were grown in sand and soil mixture with five NaCl levels (0, 0.5, 1.0, 1.5, and 2.0 g/kg dry substrate) for 55 days, following 15 days of non-saline pretreatment. Under salt stress, mycorrhizal maize plants had higher dry weight of shoot and root, higher relative chlorophyll content, better water status (decreased water saturation deficit, increased water use efficiency, and relative water content), higher gas exchange capacity (increased photosynthetic rate, stomatal conductance and transpiration rate, and decreased intercellular CO(2) concentration), higher non-photochemistry efficiency [increased non-photochemical quenching values (NPQ)], and higher photochemistry efficiency [increased the maximum quantum yield in the dark-adapted state (Fv/Fm), the maximum quantum yield in the light-adapted sate (Fv'/Fm'), the actual quantum yield in the light-adapted steady state (phiPSII) and the photochemical quenching values (qP)], compared with non-mycorrhizal maize plants. In addition, AM symbiosis could trigger the regulation of the energy biturcation between photochemical and non-photochemical events reflected in the deexcitation rate constants (kN, kN', kP, and kP'). All the results show that G. mosseae alleviates the deleterious effect of salt stress on plant growth, through improving plant water status, chlorophyll concentration, and photosynthetic capacity, while the influence of AM symbiosis on photosynthetic capacity of maize plants can be indirectly affected by soil salinity and mycorrhizae-mediated enhancement of water status, but not by the mycorrhizae-mediated enhancement of chlorophyll concentration and plant biomass.
在温室中研究了丛枝菌根(AM)真菌摩西球囊霉对盐胁迫下玉米植株生长特性、水分状况、叶绿素浓度、气体交换和叶绿素荧光的影响。玉米植株在经过15天的非盐预处理后,在含有五个NaCl水平(0、0.5、1.0、1.5和2.0 g/kg干基质)的沙子和土壤混合物中生长55天。在盐胁迫下,与非菌根玉米植株相比,菌根玉米植株地上部和根部干重更高、相对叶绿素含量更高、水分状况更好(水分饱和亏缺降低、水分利用效率和相对含水量增加)、气体交换能力更强(光合速率、气孔导度和蒸腾速率增加,胞间CO₂浓度降低)、非光化学效率更高(非光化学猝灭值(NPQ)增加)以及光化学效率更高(暗适应状态下的最大量子产量(Fv/Fm)、光适应状态下的最大量子产量(Fv'/Fm')、光适应稳态下的实际量子产量(phiPSII)和光化学猝灭值(qP)增加)。此外,AM共生可以触发光化学和非光化学事件之间能量分配的调节,这反映在去激发速率常数(kN、kN'、kP和kP')上。所有结果表明,摩西球囊霉通过改善植物水分状况、叶绿素浓度和光合能力来减轻盐胁迫对植物生长的有害影响,而AM共生对玉米植株光合能力的影响可能间接受到土壤盐分和菌根介导的水分状况增强的影响,但不受菌根介导的叶绿素浓度和植物生物量增强的影响。