Kulic Igor M, Brown André E X, Kim Hwajin, Kural Comert, Blehm Benjamin, Selvin Paul R, Nelson Philip C, Gelfand Vladimir I
School of Engineering and Applied Sciences, 29 Oxford Street, Pierce Hall 409, Harvard University, Cambridge, MA 02138, USA.
Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):10011-6. doi: 10.1073/pnas.0800031105. Epub 2008 Jul 14.
We study the role of microtubule movement in bidirectional organelle transport in Drosophila S2 cells and show that EGFP-tagged peroxisomes in cells serve as sensitive probes of motor induced, noisy cytoskeletal motions. Multiple peroxisomes move in unison over large time windows and show correlations with microtubule tip positions, indicating rapid microtubule fluctuations in the longitudinal direction. We report the first high-resolution measurement of longitudinal microtubule fluctuations performed by tracing such pairs of co-moving peroxisomes. The resulting picture shows that motor-dependent longitudinal microtubule oscillations contribute significantly to cargo movement along microtubules. Thus, contrary to the conventional view, organelle transport cannot be described solely in terms of cargo movement along stationary microtubule tracks, but instead includes a strong contribution from the movement of the tracks.
我们研究了微管运动在果蝇S2细胞双向细胞器运输中的作用,并表明细胞中带有增强绿色荧光蛋白(EGFP)标记的过氧化物酶体可作为马达诱导的、有噪声的细胞骨架运动的敏感探针。多个过氧化物酶体在较长时间窗口内协同移动,并与微管尖端位置相关,表明微管在纵向方向上有快速波动。我们报告了通过追踪此类共同移动的过氧化物酶体对进行的首次纵向微管波动的高分辨率测量。结果表明,依赖马达的纵向微管振荡对沿微管的货物运输有显著贡献。因此,与传统观点相反,细胞器运输不能仅用货物沿固定微管轨道的移动来描述,而是轨道运动也有很大贡献。