Suppr超能文献

微管运动在双向细胞器运输中的作用。

The role of microtubule movement in bidirectional organelle transport.

作者信息

Kulic Igor M, Brown André E X, Kim Hwajin, Kural Comert, Blehm Benjamin, Selvin Paul R, Nelson Philip C, Gelfand Vladimir I

机构信息

School of Engineering and Applied Sciences, 29 Oxford Street, Pierce Hall 409, Harvard University, Cambridge, MA 02138, USA.

出版信息

Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):10011-6. doi: 10.1073/pnas.0800031105. Epub 2008 Jul 14.

Abstract

We study the role of microtubule movement in bidirectional organelle transport in Drosophila S2 cells and show that EGFP-tagged peroxisomes in cells serve as sensitive probes of motor induced, noisy cytoskeletal motions. Multiple peroxisomes move in unison over large time windows and show correlations with microtubule tip positions, indicating rapid microtubule fluctuations in the longitudinal direction. We report the first high-resolution measurement of longitudinal microtubule fluctuations performed by tracing such pairs of co-moving peroxisomes. The resulting picture shows that motor-dependent longitudinal microtubule oscillations contribute significantly to cargo movement along microtubules. Thus, contrary to the conventional view, organelle transport cannot be described solely in terms of cargo movement along stationary microtubule tracks, but instead includes a strong contribution from the movement of the tracks.

摘要

我们研究了微管运动在果蝇S2细胞双向细胞器运输中的作用,并表明细胞中带有增强绿色荧光蛋白(EGFP)标记的过氧化物酶体可作为马达诱导的、有噪声的细胞骨架运动的敏感探针。多个过氧化物酶体在较长时间窗口内协同移动,并与微管尖端位置相关,表明微管在纵向方向上有快速波动。我们报告了通过追踪此类共同移动的过氧化物酶体对进行的首次纵向微管波动的高分辨率测量。结果表明,依赖马达的纵向微管振荡对沿微管的货物运输有显著贡献。因此,与传统观点相反,细胞器运输不能仅用货物沿固定微管轨道的移动来描述,而是轨道运动也有很大贡献。

相似文献

1
The role of microtubule movement in bidirectional organelle transport.
Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):10011-6. doi: 10.1073/pnas.0800031105. Epub 2008 Jul 14.
4
Organelles are transported on sliding microtubules in Reticulomyxa.
Cell Motil Cytoskeleton. 2000 Dec;47(4):296-306. doi: 10.1002/1097-0169(200012)47:4<296::AID-CM4>3.0.CO;2-4.
5
Models of motor-assisted transport of intracellular particles.
Biophys J. 2001 Jan;80(1):45-68. doi: 10.1016/S0006-3495(01)75994-2.
6
Single microtubules from squid axoplasm support bidirectional movement of organelles.
Cell. 1985 Feb;40(2):455-62. doi: 10.1016/0092-8674(85)90160-6.
9
Microtubule motors and pollen tube growth--still an open question.
Protoplasma. 2010 Dec;247(3-4):131-43. doi: 10.1007/s00709-010-0214-9. Epub 2010 Oct 5.

引用本文的文献

1
Motor-driven microtubule diffusion in a photobleached dynamical coordinate system.
Proc Natl Acad Sci U S A. 2025 Jun 17;122(24):e2417020122. doi: 10.1073/pnas.2417020122. Epub 2025 Jun 9.
2
Dynamic clamping induces rotation-to-beating transition of pinned filaments in gliding assays.
J R Soc Interface. 2025 May;22(226):20240859. doi: 10.1098/rsif.2024.0859. Epub 2025 May 7.
3
Heterogeneous model for superdiffusive movement of dense core vesicles in C. elegans.
Sci Rep. 2025 Feb 27;15(1):6996. doi: 10.1038/s41598-024-83602-1.
4
How energy determines spatial localisation and copy number of molecules in neurons.
Nat Commun. 2025 Feb 7;16(1):1424. doi: 10.1038/s41467-025-56640-0.
6
Tubulin CFEOM mutations both inhibit or activate kinesin motor activity.
Mol Biol Cell. 2024 Mar 1;35(3):ar32. doi: 10.1091/mbc.E23-01-0020. Epub 2024 Jan 3.
7
Quantitative analysis of peroxisome tracks using a Hidden Markov Model.
Sci Rep. 2023 Nov 11;13(1):19694. doi: 10.1038/s41598-023-46812-7.
9
Effect of the Rho-Kinase/ROCK Signaling Pathway on Cytoskeleton Components.
Genes (Basel). 2023 Jan 20;14(2):272. doi: 10.3390/genes14020272.
10

本文引用的文献

1
Force fluctuations and polymerization dynamics of intracellular microtubules.
Proc Natl Acad Sci U S A. 2007 Oct 9;104(41):16128-33. doi: 10.1073/pnas.0703094104. Epub 2007 Oct 2.
2
Microtubule binding by dynactin is required for microtubule organization but not cargo transport.
J Cell Biol. 2007 Feb 26;176(5):641-51. doi: 10.1083/jcb.200608128.
3
Axonal transport of microtubules: the long and short of it.
Traffic. 2006 May;7(5):490-8. doi: 10.1111/j.1600-0854.2006.00392.x.
4
Conventional kinesin mediates microtubule-microtubule interactions in vivo.
Mol Biol Cell. 2006 Feb;17(2):907-16. doi: 10.1091/mbc.e05-06-0542. Epub 2005 Dec 7.
5
Dynamics and spatial organization of endosomes in mammalian cells.
Phys Rev Lett. 2005 Oct 7;95(15):158101. doi: 10.1103/PhysRevLett.95.158101. Epub 2005 Oct 5.
6
Hither and yon: a review of bi-directional microtubule-based transport.
Phys Biol. 2004 Jun;1(1-2):R1-11. doi: 10.1088/1478-3967/1/2/R01.
7
Kinesin and dynein move a peroxisome in vivo: a tug-of-war or coordinated movement?
Science. 2005 Jun 3;308(5727):1469-72. doi: 10.1126/science.1108408. Epub 2005 Apr 7.
8
Propagation and relaxation of tension in stiff polymers.
Phys Rev Lett. 2005 Feb 25;94(7):077804. doi: 10.1103/PhysRevLett.94.077804.
9
Role of cytoplasmic dynein in the axonal transport of microtubules and neurofilaments.
J Cell Biol. 2005 Feb 28;168(5):697-703. doi: 10.1083/jcb.200407191. Epub 2005 Feb 22.
10
Transport of Drosophila fragile X mental retardation protein-containing ribonucleoprotein granules by kinesin-1 and cytoplasmic dynein.
Proc Natl Acad Sci U S A. 2004 Dec 14;101(50):17428-33. doi: 10.1073/pnas.0408114101. Epub 2004 Dec 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验