Xu Qiaobing, Rioux Robert M, Whitesides George M
Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA.
ACS Nano. 2007 Oct;1(3):215-27. doi: 10.1021/nn700172c.
This paper describes the use of nanoskiving to fabricate complex metallic nanostructures by sectioning polymer slabs containing small, embedded metal structures. This method begins with the deposition of thin metallic films on an epoxy substrate by e-beam evaporation or sputtering. After embedding the thin metallic film in an epoxy matrix, sectioning (in a plane perpendicular or parallel to the metal film) with an ultramicrotome generates sections (which can be as thin as 50 nm) of epoxy containing metallic nanostructures. The cross-sectional dimensions of the metal wires embedded in the resulting thin epoxy sections are controlled by the thickness of the evaporated metal film (which can be as small as 20 nm) and the thickness of the sections cut by the ultramicrotome; this work uses a standard 45 degrees diamond knife and routinely generates slabs 50 nm thick. The embedded nanostructures can be transferred to, and positioned on, planar or curved substrates by manipulating the thin polymer film. Removal of the epoxy matrix by etching with an oxygen plasma generates free-standing metallic nanostructures. Nanoskiving can fabricate complex nanostructures that are difficult or impossible to achieve by other methods of nanofabrication. These include multilayer structures, structures on curved surfaces, structures that span gaps, structures in less familiar materials, structures with high aspect ratios, and large-area structures comprising two-dimensional periodic arrays. This paper illustrates one class of application of these nanostructures: frequency-selective surfaces at mid-IR wavelengths.
本文描述了利用纳米切片技术制造复杂金属纳米结构的方法,该方法是通过切割包含小型嵌入式金属结构的聚合物平板来实现的。此方法首先通过电子束蒸发或溅射在环氧树脂基板上沉积薄金属膜。将薄金属膜嵌入环氧树脂基体后,用超薄切片机进行切片(在与金属膜垂直或平行的平面上),可得到含有金属纳米结构的环氧树脂切片(厚度可达50纳米)。嵌入所得薄环氧树脂切片中的金属线的横截面尺寸由蒸发金属膜的厚度(可小至20纳米)和超薄切片机切割的切片厚度控制;本研究使用标准的45度金刚石刀,常规生成50纳米厚的平板。通过操纵薄聚合物膜,可将嵌入的纳米结构转移到平面或曲面基板上并定位。用氧等离子体蚀刻去除环氧树脂基体后,可得到独立的金属纳米结构。纳米切片技术能够制造出其他纳米制造方法难以或无法实现的复杂纳米结构。这些结构包括多层结构、曲面结构、跨越间隙的结构、在不太常见材料中的结构、具有高纵横比的结构以及包含二维周期性阵列的大面积结构。本文展示了这些纳米结构的一类应用:中红外波长的频率选择表面。