Suppr超能文献

随机光子吸收模型揭示了果蝇光感受器中的早期增益控制如何源于量子采样。

Random Photon Absorption Model Elucidates How Early Gain Control in Fly Photoreceptors Arises from Quantal Sampling.

作者信息

Song Zhuoyi, Zhou Yu, Juusola Mikko

机构信息

Centre for Mathematics, Physics and Engineering in the Life Sciences and Experimental Biology (CoMPLEX), University College LondonLondon, UK; Department of Biomedical Science, University of SheffieldSheffield, UK.

School of Engineering, College of Science and Technology, University of Central Lancashire Preston, UK.

出版信息

Front Comput Neurosci. 2016 Jun 24;10:61. doi: 10.3389/fncom.2016.00061. eCollection 2016.

Abstract

Many diurnal photoreceptors encode vast real-world light changes effectively, but how this performance originates from photon sampling is unclear. A 4-module biophysically-realistic fly photoreceptor model, in which information capture is limited by the number of its sampling units (microvilli) and their photon-hit recovery time (refractoriness), can accurately simulate real recordings and their information content. However, sublinear summation in quantum bump production (quantum-gain-nonlinearity) may also cause adaptation by reducing the bump/photon gain when multiple photons hit the same microvillus simultaneously. Here, we use a Random Photon Absorption Model (RandPAM), which is the 1st module of the 4-module fly photoreceptor model, to quantify the contribution of quantum-gain-nonlinearity in light adaptation. We show how quantum-gain-nonlinearity already results from photon sampling alone. In the extreme case, when two or more simultaneous photon-hits reduce to a single sublinear value, quantum-gain-nonlinearity is preset before the phototransduction reactions adapt the quantum bump waveform. However, the contribution of quantum-gain-nonlinearity in light adaptation depends upon the likelihood of multi-photon-hits, which is strictly determined by the number of microvilli and light intensity. Specifically, its contribution to light-adaptation is marginal (≤ 1%) in fly photoreceptors with many thousands of microvilli, because the probability of simultaneous multi-photon-hits on any one microvillus is low even during daylight conditions. However, in cells with fewer sampling units, the impact of quantum-gain-nonlinearity increases with brightening light.

摘要

许多昼光感受器能有效地编码现实世界中巨大的光变化,但这种性能如何源自光子采样尚不清楚。一个具有4个模块的生物物理现实的果蝇光感受器模型,其中信息捕获受其采样单元(微绒毛)数量及其光子击中恢复时间(不应期)的限制,可以准确模拟真实记录及其信息内容。然而,量子脉冲产生中的亚线性总和(量子增益非线性)也可能通过在多个光子同时击中同一微绒毛时降低脉冲/光子增益而导致适应性变化。在这里,我们使用随机光子吸收模型(RandPAM),它是4模块果蝇光感受器模型的第一个模块,来量化量子增益非线性在光适应中的作用。我们展示了量子增益非线性是如何仅由光子采样产生的。在极端情况下,当两个或更多同时发生的光子击中减少到单个亚线性值时,量子增益非线性在光转导反应使量子脉冲波形适应之前就已预设。然而,量子增益非线性在光适应中的作用取决于多光子击中的可能性,这严格由微绒毛数量和光强度决定。具体而言,在具有数千个微绒毛的果蝇光感受器中,其对光适应的贡献很小(≤1%),因为即使在白天条件下,任何一个微绒毛上同时发生多光子击中的概率也很低。然而,在采样单元较少的细胞中,量子增益非线性的影响随着光亮度的增加而增大。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddb6/4919358/cd0378d1244f/fncom-10-00061-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验