Suppr超能文献

利用功能磁共振成像实时调节区域皮质活动:右侧额下回与语言加工

Self-regulation of regional cortical activity using real-time fMRI: the right inferior frontal gyrus and linguistic processing.

作者信息

Rota Giuseppina, Sitaram Ranganatha, Veit Ralf, Erb Michael, Weiskopf Nikolaus, Dogil Grzegorz, Birbaumer Niels

机构信息

Institute for Natural Language Processing, University of Stuttgart, Azenbergstrasse 12, Stuttgart, Germany.

出版信息

Hum Brain Mapp. 2009 May;30(5):1605-14. doi: 10.1002/hbm.20621.

Abstract

Neurofeedback of functional magnetic resonance imaging (fMRI) can be used to acquire selective control over activation in circumscribed brain areas, potentially inducing behavioral changes, depending on the functional role of the targeted cortical sites. In the present study, we used fMRI-neurofeedback to train subjects to enhance regional activation in the right inferior frontal gyrus (IFG) to influence speech processing and to modulate language-related performance. Seven subjects underwent real-time fMRI-neurofeedback training and succeeded in achieving voluntary regulation of their right Brodmann's area (BA) 45. To examine short-term behavioral impact, two linguistic tasks were carried out immediately before and after the training. A significant improvement of accuracy was observed for the identification of emotional prosodic intonations but not for syntactic processing. This evidence supports a role for the right IFG in the processing of emotional information and evaluation of affective salience. The present study confirms the efficacy of fMRI-biofeedback for noninvasive self-regulation of circumscribed brain activity.

摘要

功能磁共振成像(fMRI)的神经反馈可用于对特定脑区的激活进行选择性控制,根据目标皮质位点的功能作用,有可能诱发行为变化。在本研究中,我们使用fMRI神经反馈训练受试者增强右侧额下回(IFG)的区域激活,以影响言语处理并调节语言相关表现。7名受试者接受了实时fMRI神经反馈训练,并成功实现了对其右侧布罗德曼区(BA)45的自主调节。为了检查短期行为影响,在训练前后立即进行了两项语言任务。在识别情感韵律语调方面观察到准确性有显著提高,但在句法处理方面没有。这一证据支持右侧IFG在情感信息处理和情感显著性评估中的作用。本研究证实了fMRI生物反馈对外周脑活动进行无创自我调节的有效性。

相似文献

2
Dissociating linguistic and task-related activity in the left inferior frontal gyrus.
J Cogn Neurosci. 2011 Feb;23(2):404-13. doi: 10.1162/jocn.2010.21450. Epub 2010 Mar 4.
3
Activity and functional connectivity of inferior frontal cortex associated with response conflict.
Brain Res Cogn Brain Res. 2005 Jul;24(2):335-42. doi: 10.1016/j.cogbrainres.2005.02.015. Epub 2005 Mar 29.
5
Reorganization of functional and effective connectivity during real-time fMRI-BCI modulation of prosody processing.
Brain Lang. 2011 Jun;117(3):123-32. doi: 10.1016/j.bandl.2010.07.008. Epub 2010 Oct 2.
6
Functional heterogeneity of inferior frontal gyrus is shaped by linguistic experience.
Brain Lang. 2001 Mar;76(3):227-52. doi: 10.1006/brln.2000.2382.
7
Selective tuning of the right inferior frontal gyrus during target detection.
Cogn Affect Behav Neurosci. 2009 Mar;9(1):103-12. doi: 10.3758/CABN.9.1.103.
8
Functional segregation of the inferior frontal gyrus for syntactic processes: a functional magnetic-resonance imaging study.
Neurosci Res. 2008 Jul;61(3):309-18. doi: 10.1016/j.neures.2008.03.013. Epub 2008 Apr 18.
9
The involvement of occipital and inferior frontal cortex in the phonological learning of Chinese characters.
J Cogn Neurosci. 2011 Aug;23(8):1998-2012. doi: 10.1162/jocn.2010.21571. Epub 2010 Aug 31.
10
Frontal cortex functional connectivity changes during sound categorization.
Neuroreport. 2006 Apr 24;17(6):617-21. doi: 10.1097/00001756-200604240-00012.

引用本文的文献

3
From lab to life: challenges and perspectives of fNIRS for haemodynamic-based neurofeedback in real-world environments.
Philos Trans R Soc Lond B Biol Sci. 2024 Dec 2;379(1915):20230087. doi: 10.1098/rstb.2023.0087. Epub 2024 Oct 21.
4
Closed-loop fMRI at the mesoscopic scale of columns and layers: Can we do it and why would we want to?
Philos Trans R Soc Lond B Biol Sci. 2024 Dec 2;379(1915):20230085. doi: 10.1098/rstb.2023.0085. Epub 2024 Oct 21.
5
Targeted neurorehabilitation strategies in post-stroke aphasia.
Restor Neurol Neurosci. 2023;41(3-4):129-191. doi: 10.3233/RNN-231344.
6
Divergent brain regional atrophy and associated fiber disruption in amnestic and non-amnestic MCI.
Alzheimers Res Ther. 2023 Nov 13;15(1):199. doi: 10.1186/s13195-023-01335-1.
7
Selecting an optimal real-time fMRI neurofeedback method for alcohol craving control training.
Psychophysiology. 2023 Nov;60(11):e14367. doi: 10.1111/psyp.14367. Epub 2023 Jun 16.
8
Examination of common and unique brain regions for atypical reading and math: a meta-analysis.
Cereb Cortex. 2023 May 24;33(11):6959-6989. doi: 10.1093/cercor/bhad013.
9
The relationship between alexithymia, interoception, and neural functional connectivity during facial expression processing in autism spectrum disorder.
Neuropsychologia. 2023 Feb 10;180:108469. doi: 10.1016/j.neuropsychologia.2023.108469. Epub 2023 Jan 4.
10
Frontostriatal circuitry as a target for fMRI-based neurofeedback interventions: A systematic review.
Front Hum Neurosci. 2022 Aug 24;16:933718. doi: 10.3389/fnhum.2022.933718. eCollection 2022.

本文引用的文献

1
FMRI brain-computer interface: a tool for neuroscientific research and treatment.
Comput Intell Neurosci. 2007;2007:25487. doi: 10.1155/2007/25487.
2
Processing of inconsistent emotional information: an fMRI study.
Exp Brain Res. 2008 Apr;186(3):401-7. doi: 10.1007/s00221-007-1242-3. Epub 2007 Dec 20.
3
Impaired recognition and expression of emotional prosody in schizophrenia: review and meta-analysis.
Schizophr Res. 2007 Nov;96(1-3):135-45. doi: 10.1016/j.schres.2007.07.023. Epub 2007 Sep 4.
4
Real-time functional magnetic resonance imaging: methods and applications.
Magn Reson Imaging. 2007 Jul;25(6):989-1003. doi: 10.1016/j.mri.2007.02.007. Epub 2007 Apr 23.
5
Regulation of anterior insular cortex activity using real-time fMRI.
Neuroimage. 2007 Apr 15;35(3):1238-46. doi: 10.1016/j.neuroimage.2007.01.018. Epub 2007 Jan 31.
6
Reduced sensitivity to prosodic attitudes in adults with focal right hemisphere brain damage.
Brain Lang. 2007 Apr;101(1):64-79. doi: 10.1016/j.bandl.2006.10.003. Epub 2006 Nov 22.
7
White matter abnormalities and brain activation in schizophrenia: a combined DTI and fMRI study.
Schizophr Res. 2007 Jan;89(1-3):1-11. doi: 10.1016/j.schres.2006.09.007. Epub 2006 Nov 7.
8
Breaking the silence: brain-computer interfaces (BCI) for communication and motor control.
Psychophysiology. 2006 Nov;43(6):517-32. doi: 10.1111/j.1469-8986.2006.00456.x.
9
Self-regulation of slow cortical potentials: a new treatment for children with attention-deficit/hyperactivity disorder.
Pediatrics. 2006 Nov;118(5):e1530-40. doi: 10.1542/peds.2005-2478. Epub 2006 Oct 23.
10
Assessment of cerebral blood volume in schizophrenia: A magnetic resonance imaging study.
J Psychiatr Res. 2007 Sep;41(6):502-10. doi: 10.1016/j.jpsychires.2006.03.002. Epub 2006 May 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验