Suppr超能文献

对土地利用/土地覆盖进行分层以用于疾病生态学和风险的空间分析:一个使用基于对象分类技术的示例。

Stratifying land use/land cover for spatial analysis of disease ecology and risk: an example using object-based classification techniques.

作者信息

Koch David E, Mohler Rhett L, Goodin Douglas G

机构信息

Department of Geography, Kansas State University, Manhattan, KS 66506-2904, USA.

出版信息

Geospat Health. 2007 Nov;2(1):15-28. doi: 10.4081/gh.2007.251.

Abstract

Landscape epidemiology has made significant strides recently, driven in part by increasing availability of land cover data derived from remotely-sensed imagery. Using an example from a study of land cover effects on hantavirus dynamics at an Atlantic Forest site in eastern Paraguay, we demonstrate how automated classification methods can be used to stratify remotely-sensed land cover for studies of infectious disease dynamics. For this application, it was necessary to develop a scheme that could yield both land cover and land use data from the same classification. Hypothesizing that automated discrimination between classes would be more accurate using an object-based method compared to a per-pixel method, we used a single Landsat Enhanced Thematic Mapper+ (ETM+) image to classify land cover into eight classes using both per-pixel and object-based classification algorithms. Our results show that the object-based method achieves 84% overall accuracy, compared to only 43% using the per-pixel method. Producer's and user's accuracies for the object-based map were higher for every class compared to the per-pixel classification. The Kappa statistic was also significantly higher for the object-based classification. These results show the importance of using image information from domains beyond the spectral domain, and also illustrate the importance of object-based techniques for remote sensing applications in epidemiological studies.

摘要

景观流行病学最近取得了重大进展,部分原因是来自遥感影像的土地覆盖数据的可得性不断提高。以巴拉圭东部大西洋森林地区一项关于土地覆盖对汉坦病毒动态影响的研究为例,我们展示了如何使用自动分类方法对遥感土地覆盖进行分层,以研究传染病动态。对于此应用,有必要开发一种能从同一分类中生成土地覆盖和土地利用数据的方案。假设与逐像素方法相比,基于对象的方法在类间自动判别上会更准确,我们使用一幅Landsat增强型专题制图仪+(ETM+)影像,分别采用逐像素和基于对象的分类算法将土地覆盖分为八类。我们的结果表明,基于对象的方法总体精度达到84%,而逐像素方法仅为43%。与逐像素分类相比,基于对象的地图中各类别的生产者精度和用户精度都更高。基于对象的分类的卡帕统计量也显著更高。这些结果显示了利用光谱域以外领域的图像信息的重要性,也说明了基于对象的技术在流行病学研究遥感应用中的重要性。

相似文献

8
Land cover change of watersheds in Southern Guam from 1973 to 2001.1973 年至 2001 年期间,关岛南部流域的土地覆盖变化。
Environ Monit Assess. 2011 Aug;179(1-4):521-9. doi: 10.1007/s10661-010-1760-5. Epub 2010 Nov 12.

引用本文的文献

6
Evidence for novel hepaciviruses in rodents.啮齿动物中新型庚型肝炎病毒的证据。
PLoS Pathog. 2013;9(6):e1003438. doi: 10.1371/journal.ppat.1003438. Epub 2013 Jun 20.

本文引用的文献

10
Linking remote sensing, land cover and disease.连接遥感、土地覆盖与疾病。
Adv Parasitol. 2000;47:37-80. doi: 10.1016/s0065-308x(00)47006-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验