Suppr超能文献

贝叶斯运动估计解释了3D视觉中一种惊人的偏差。

Bayesian motion estimation accounts for a surprising bias in 3D vision.

作者信息

Welchman Andrew E, Lam Judith M, Bülthoff Heinrich H

机构信息

School of Psychology, University of Birmingham, Edgbaston B15 2TT, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):12087-92. doi: 10.1073/pnas.0804378105. Epub 2008 Aug 12.

Abstract

Determining the approach of a moving object is a vital survival skill that depends on the brain combining information about lateral translation and motion-in-depth. Given the importance of sensing motion for obstacle avoidance, it is surprising that humans make errors, reporting an object will miss them when it is on a collision course with their head. Here we provide evidence that biases observed when participants estimate movement in depth result from the brain's use of a "prior" favoring slow velocity. We formulate a Bayesian model for computing 3D motion using independently estimated parameters for the shape of the visual system's slow velocity prior. We demonstrate the success of this model in accounting for human behavior in separate experiments that assess both sensitivity and bias in 3D motion estimation. Our results show that a surprising perceptual error in 3D motion perception reflects the importance of prior probabilities when estimating environmental properties.

摘要

确定移动物体的行进方向是一项至关重要的生存技能,这依赖于大脑整合有关横向平移和深度运动的信息。鉴于感知运动对避障的重要性,令人惊讶的是,人类会出现错误,当物体正朝着他们头部的碰撞路线移动时,却报告该物体会错过他们。在这里,我们提供证据表明,当参与者估计深度运动时观察到的偏差源于大脑对有利于慢速度的“先验”的运用。我们构建了一个贝叶斯模型,用于使用视觉系统慢速度先验形状的独立估计参数来计算三维运动。我们在单独的实验中证明了该模型在解释三维运动估计中的敏感性和偏差方面人类行为的成功。我们的结果表明,三维运动感知中一个惊人的感知错误反映了估计环境属性时先验概率的重要性。

相似文献

1
Bayesian motion estimation accounts for a surprising bias in 3D vision.贝叶斯运动估计解释了3D视觉中一种惊人的偏差。
Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):12087-92. doi: 10.1073/pnas.0804378105. Epub 2008 Aug 12.
5
But Still It Moves: Static Image Statistics Underlie How We See Motion.但它仍在动:静态图像统计是我们感知运动的基础。
J Neurosci. 2020 Mar 18;40(12):2538-2552. doi: 10.1523/JNEUROSCI.2760-19.2020. Epub 2020 Feb 13.
6
Bayesian modeling of dynamic motion integration.动态运动整合的贝叶斯建模
J Physiol Paris. 2007 Jan-May;101(1-3):64-77. doi: 10.1016/j.jphysparis.2007.10.013. Epub 2007 Oct 26.
7
Motion and disparity processing informs Bayesian 3D motion estimation.运动和视差处理为贝叶斯三维运动估计提供信息。
Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):E117; author reply E118. doi: 10.1073/pnas.0809829105. Epub 2008 Dec 1.
9
Bayesian processing of vestibular information.前庭信息的贝叶斯处理
Biol Cybern. 2007 Apr;96(4):389-404. doi: 10.1007/s00422-006-0133-1. Epub 2006 Dec 5.

引用本文的文献

8
The case against probabilistic inference: a new deterministic theory of 3D visual processing.反对概率推理的案例:一种新的 3D 视觉处理确定性理论。
Philos Trans R Soc Lond B Biol Sci. 2023 Jan 30;378(1869):20210458. doi: 10.1098/rstb.2021.0458. Epub 2022 Dec 13.

本文引用的文献

6
Focus cues affect perceived depth.聚焦线索会影响感知深度。
J Vis. 2005 Dec 15;5(10):834-62. doi: 10.1167/5.10.7.
7
Collision judgment of objects approaching the head.靠近头部物体的碰撞判断
Exp Brain Res. 2006 May;171(1):35-46. doi: 10.1007/s00221-005-0257-x. Epub 2005 Dec 3.
10
Using visual direction in three-dimensional motion perception.在三维运动感知中运用视觉方向
Nat Neurosci. 2005 Feb;8(2):229-33. doi: 10.1038/nn1389. Epub 2005 Jan 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验