Suppr超能文献

帕金森病对动作选择过程中干扰控制的影响。

The effect of Parkinson's disease on interference control during action selection.

作者信息

Wylie S A, van den Wildenberg W P M, Ridderinkhof K R, Bashore T R, Powell V D, Manning C A, Wooten G F

机构信息

Neurology Department, University of Virginia Health Systems, 500 Ray C. Hunt Drive, Charlottesville, VA 22908, USA.

出版信息

Neuropsychologia. 2009 Jan;47(1):145-57. doi: 10.1016/j.neuropsychologia.2008.08.001. Epub 2008 Aug 9.

Abstract

Basal ganglia structures comprise a portion of the neural circuitry that is hypothesized to coordinate the selection and suppression of competing responses. Parkinson's disease (PD) may produce a dysfunction in these structures that alters this capacity, making it difficult for patients with PD to suppress interference arising from the automatic activation of salient or overlearned responses. Empirical observations thus far have confirmed this assumption in some studies, but not in others, due presumably to considerable inter-individual variability among PD patients. In an attempt to help resolve this controversy, we measured the performance of 50 PD patients and 25 healthy controls on an arrow version of the Eriksen flanker task in which participants were required to select a response based on the direction of a target arrow that was flanked by arrows pointing in the same (congruent) or opposite (incongruent) direction. Consistent with previous findings, reaction time (RT) increased with incongruent flankers compared to congruent or neutral flankers, and this cost of incongruence was greater among PD patients. Two novel findings are reported. First, distributional analyses, guided by dual-process models of conflict effects and the activation-suppression hypothesis, revealed that PD patients are less efficient at suppressing the activation of conflicting responses, even when matched to healthy controls on RT in a neutral condition. Second, this reduced efficiency was apparent in half of the PD patients, whereas the remaining patients were as efficient as healthy controls. These findings suggest that although poor suppression of conflicting responses is an important feature of PD, it is not evident in all medicated patients.

摘要

基底神经节结构是神经回路的一部分,据推测其可协调对相互竞争反应的选择和抑制。帕金森病(PD)可能导致这些结构功能失调,从而改变这种能力,使PD患者难以抑制由显著或过度学习反应的自动激活所产生的干扰。迄今为止的实证观察在一些研究中证实了这一假设,但在另一些研究中却未得到证实,这可能是由于PD患者之间存在相当大的个体差异。为了帮助解决这一争议,我们让50名PD患者和25名健康对照者完成了箭头版的埃里克森侧翼任务,在该任务中,参与者需要根据目标箭头的方向进行反应选择,目标箭头两侧的箭头指向相同(一致)或相反(不一致)方向。与先前的研究结果一致,与一致或中性侧翼相比,不一致侧翼条件下的反应时间(RT)增加,且这种不一致成本在PD患者中更大。本文报告了两个新发现。首先,在冲突效应的双过程模型和激活-抑制假设的指导下进行的分布分析表明,即使在中性条件下RT与健康对照者匹配,PD患者在抑制冲突反应的激活方面效率较低。其次,这种效率降低在一半的PD患者中明显,而其余患者与健康对照者效率相当。这些发现表明,尽管对冲突反应的抑制能力差是PD的一个重要特征,但并非在所有接受药物治疗的患者中都明显。

相似文献

1
The effect of Parkinson's disease on interference control during action selection.
Neuropsychologia. 2009 Jan;47(1):145-57. doi: 10.1016/j.neuropsychologia.2008.08.001. Epub 2008 Aug 9.
2
The effect of speed-accuracy strategy on response interference control in Parkinson's disease.
Neuropsychologia. 2009 Jul;47(8-9):1844-53. doi: 10.1016/j.neuropsychologia.2009.02.025. Epub 2009 Feb 28.
5
Activation of conflicting responses in Parkinson's disease: evidence for degrading and facilitating effects on response time.
Neuropsychologia. 2005;43(7):1033-43. doi: 10.1016/j.neuropsychologia.2004.10.008. Epub 2005 Jan 8.
7
The error negativity in nonmedicated and medicated patients with Parkinson's disease.
Clin Neurophysiol. 2007 Jun;118(6):1223-9. doi: 10.1016/j.clinph.2007.02.019. Epub 2007 Mar 29.
8
Time-course of masked response priming and inhibition in Parkinson's disease.
Neuropsychologia. 2006;44(6):869-75. doi: 10.1016/j.neuropsychologia.2005.09.001. Epub 2005 Oct 13.
9
Effects of stimulus-response compatibility in Parkinson's disease: a psychophysiological analysis.
J Neural Transm (Vienna). 2006 Oct;113(10):1449-62. doi: 10.1007/s00702-005-0430-1. Epub 2006 Feb 9.
10
Adjustments of conflict monitoring in Parkinson's disease.
Neuropsychology. 2010 Jul;24(4):542-6. doi: 10.1037/a0018384.

引用本文的文献

1
Effect of Botulinum Toxin on Sensori-Motor Integration in Movement Disorders: A Scoping Review.
Toxins (Basel). 2025 Aug 16;17(8):416. doi: 10.3390/toxins17080416.
2
Theta and beta power in the subthalamic nucleus responds to conflict across subregions and hemispheres.
Brain Commun. 2025 Jan 16;7(1):fcaf021. doi: 10.1093/braincomms/fcaf021. eCollection 2025.
3
Changes in electrophysiological aperiodic activity during cognitive control in Parkinson's disease.
Brain Commun. 2024 Sep 7;6(5):fcae306. doi: 10.1093/braincomms/fcae306. eCollection 2024.
5
Mechanisms and neuroanatomy of response selection in tool and non-tool action tasks: Evidence from left-hemisphere stroke.
Cortex. 2023 Oct;167:335-350. doi: 10.1016/j.cortex.2023.06.012. Epub 2023 Jul 22.
6
Huntington disease exacerbates action impulses.
Front Psychol. 2023 Jun 16;14:1186465. doi: 10.3389/fpsyg.2023.1186465. eCollection 2023.
7
Easy to process, hard to control: Transient and sustained processing fluency impairs cognitive control adjustments to conflict.
Q J Exp Psychol (Hove). 2023 Nov;76(11):2524-2534. doi: 10.1177/17470218231159787. Epub 2023 Mar 23.
8
A neurocomputational theory of action regulation predicts motor behavior in neurotypical individuals and patients with Parkinson's disease.
PLoS Comput Biol. 2022 Nov 17;18(11):e1010111. doi: 10.1371/journal.pcbi.1010111. eCollection 2022 Nov.
9
Effects of deep brain stimulation target on the activation and suppression of action impulses.
Clin Neurophysiol. 2022 Dec;144:50-58. doi: 10.1016/j.clinph.2022.09.012. Epub 2022 Oct 3.
10
Better Executive Functions Are Associated With More Efficient Cognitive Pain Modulation in Older Adults: An fMRI Study.
Front Aging Neurosci. 2022 Jul 7;14:828742. doi: 10.3389/fnagi.2022.828742. eCollection 2022.

本文引用的文献

1
The role of the striatum in the mental chronometry of action: a theoretical review.
Rev Neurosci. 1990 Oct-Dec;2(4):181-214. doi: 10.1515/REVNEURO.1990.2.4.181.
2
The effect of speed-accuracy strategy on response interference control in Parkinson's disease.
Neuropsychologia. 2009 Jul;47(8-9):1844-53. doi: 10.1016/j.neuropsychologia.2009.02.025. Epub 2009 Feb 28.
3
Neural mechanisms, temporal dynamics, and individual differences in interference control.
J Cogn Neurosci. 2008 Oct;20(10):1854-65. doi: 10.1162/jocn.2008.20122.
4
Error processing in patients with Parkinson's disease: the influence of medication state.
J Neural Transm (Vienna). 2008;115(3):461-8. doi: 10.1007/s00702-007-0842-1. Epub 2008 Feb 4.
5
The neural basis of inhibition in cognitive control.
Neuroscientist. 2007 Jun;13(3):214-28. doi: 10.1177/1073858407299288.
6
Optimal decision-making theories: linking neurobiology with behaviour.
Trends Cogn Sci. 2007 Mar;11(3):118-25. doi: 10.1016/j.tics.2006.12.006. Epub 2007 Feb 2.
7
Inefficient response inhibition in individuals with mild cognitive impairment.
Neuropsychologia. 2007 Apr 8;45(7):1408-19. doi: 10.1016/j.neuropsychologia.2006.11.003. Epub 2006 Dec 18.
9
Impaired inhibitory oculomotor control in patients with Parkinson's disease.
Exp Brain Res. 2007 Mar;177(4):447-57. doi: 10.1007/s00221-006-0687-0. Epub 2006 Sep 19.
10
Hold your horses: a dynamic computational role for the subthalamic nucleus in decision making.
Neural Netw. 2006 Oct;19(8):1120-36. doi: 10.1016/j.neunet.2006.03.006. Epub 2006 Sep 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验