Suppr超能文献

缺氧/复氧过程中活性心脏线粒体活性氧的产生:一氧化氮的调节作用

Reactive oxygen species production in energized cardiac mitochondria during hypoxia/reoxygenation: modulation by nitric oxide.

作者信息

Korge Paavo, Ping Peipei, Weiss James N

机构信息

Cardiovascular Research Laboratory, Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.

出版信息

Circ Res. 2008 Oct 10;103(8):873-80. doi: 10.1161/CIRCRESAHA.108.180869. Epub 2008 Sep 5.

Abstract

Mitochondria are an important source of reactive oxygen species (ROS), implicated in ischemia/reperfusion injury. When isolated from ischemic myocardium, mitochondria demonstrate increased ROS production as a result of damage to electron transport complexes. To investigate the mechanisms, we studied effects of hypoxia/reoxygenation on ROS production by isolated energized heart mitochondria. ROS production, tracked using Fe(2+)-catalyzed, H(2)O(2)-dependent H(2)DCF oxidation or Amplex Red, was similar during normoxia and hypoxia but markedly increased during reoxygenation, in proportion to the duration of hypoxia. In contrast, if mitochondria were rapidly converted from normoxia to near-anoxia ([O(2)], <1 micromol/L), the increase in H(2)DCF oxidation rate during reoxygenation was markedly blunted. To elicit the robust increase in H(2)DCF oxidation rate during reoxygenation, hypoxia had to be severe enough to cause partial, but not complete, respiratory chain inhibition (as shown by partial dissipation of membrane potential and increased NADH autofluorescence). Consistent with its cardioprotective actions, nitric oxide ( O) abrogated increased H(2)DCF oxidation under these conditions, as well as attenuating ROS-induced increases in matrix [Fe(2+)] and aconitase inhibition caused by antimycin. Collectively, these results suggest that (1) hypoxia that is sufficient to cause partial respiratory inhibition is more damaging to mitochondria than near-anoxia; and (2) O suppresses ROS-induced damage to electron transport complexes, probably by forming O-Fe(2+) complexes in the presence of glutathione, which inhibit hydroxyl radical formation.

摘要

线粒体是活性氧(ROS)的重要来源,与缺血/再灌注损伤有关。当从缺血心肌中分离出来时,由于电子传递复合物受损,线粒体显示出ROS产生增加。为了研究其机制,我们研究了缺氧/复氧对分离的有功能的心脏线粒体ROS产生的影响。使用铁(II)催化的、过氧化氢依赖性的二氯荧光素(H2DCF)氧化或Amplex Red追踪ROS产生,在常氧和缺氧期间相似,但在复氧期间显著增加,与缺氧持续时间成比例。相反,如果线粒体从常氧迅速转变为近无氧状态([O2],<1微摩尔/升),复氧期间H2DCF氧化速率的增加则明显减弱。为了在复氧期间引发H2DCF氧化速率的强劲增加,缺氧必须严重到足以导致部分但非完全的呼吸链抑制(如膜电位部分耗散和NADH自发荧光增加所示)。与一氧化氮(NO)的心脏保护作用一致,在这些条件下,NO消除了H2DCF氧化的增加,同时也减弱了ROS诱导的基质[Fe2+]增加和抗霉素引起的乌头酸酶抑制。总体而言,这些结果表明:(1)足以导致部分呼吸抑制的缺氧对线粒体的损害比近无氧状态更大;(2)NO可能通过在谷胱甘肽存在下形成NO-Fe2+复合物来抑制羟自由基的形成,从而抑制ROS对电子传递复合物的损伤。

相似文献

1
Reactive oxygen species production in energized cardiac mitochondria during hypoxia/reoxygenation: modulation by nitric oxide.
Circ Res. 2008 Oct 10;103(8):873-80. doi: 10.1161/CIRCRESAHA.108.180869. Epub 2008 Sep 5.
2
Glutathione peroxidase 1 protects mitochondria against hypoxia/reoxygenation damage in mouse hearts.
Pflugers Arch. 2010 Jun;460(1):55-68. doi: 10.1007/s00424-010-0811-7. Epub 2010 Mar 20.
3
Reactive oxygen species production induced by pore opening in cardiac mitochondria: The role of complex III.
J Biol Chem. 2017 Jun 16;292(24):9882-9895. doi: 10.1074/jbc.M116.768317. Epub 2017 Apr 27.
4
Ischemic defects in the electron transport chain increase the production of reactive oxygen species from isolated rat heart mitochondria.
Am J Physiol Cell Physiol. 2008 Feb;294(2):C460-6. doi: 10.1152/ajpcell.00211.2007. Epub 2007 Dec 12.
5
Oxygen-dependence of mitochondrial ROS production as detected by Amplex Red assay.
Redox Biol. 2018 Jul;17:192-199. doi: 10.1016/j.redox.2018.04.014. Epub 2018 Apr 14.
6
Production of reactive oxygen species by mitochondria: central role of complex III.
J Biol Chem. 2003 Sep 19;278(38):36027-31. doi: 10.1074/jbc.M304854200. Epub 2003 Jul 2.
7
Anoxia-reoxygenation alters HO efflux and sensitivity of redox centers to copper in heart mitochondria.
Comp Biochem Physiol C Toxicol Pharmacol. 2021 Oct;248:109111. doi: 10.1016/j.cbpc.2021.109111. Epub 2021 Jun 16.
10
Removal of H₂O₂ and generation of superoxide radical: role of cytochrome c and NADH.
Free Radic Biol Med. 2011 Jul 1;51(1):160-70. doi: 10.1016/j.freeradbiomed.2011.04.007. Epub 2011 Apr 13.

引用本文的文献

2
STING aggravates ferroptosis-dependent myocardial ischemia-reperfusion injury by targeting GPX4 for autophagic degradation.
Signal Transduct Target Ther. 2025 Apr 25;10(1):136. doi: 10.1038/s41392-025-02216-9.
3
Prolonged Hypoxia in Rat Living Myocardial Slices Affects Function, Expression, and Structure.
Int J Mol Sci. 2024 Dec 30;26(1):218. doi: 10.3390/ijms26010218.
4
Preventing mitochondrial reverse electron transport as a strategy for cardioprotection.
Basic Res Cardiol. 2023 Aug 28;118(1):34. doi: 10.1007/s00395-023-01002-4.
5
Cardiac Hypoxia Tolerance in Fish: From Functional Responses to Cell Signals.
Int J Mol Sci. 2023 Jan 11;24(2):1460. doi: 10.3390/ijms24021460.
8
Barth syndrome cardiomyopathy: targeting the mitochondria with elamipretide.
Heart Fail Rev. 2021 Mar;26(2):237-253. doi: 10.1007/s10741-020-10031-3. Epub 2020 Oct 1.
9
Hydrogen sulfide alleviates oxidative stress injury and reduces apoptosis induced by MPP in Parkinson's disease cell model.
Mol Cell Biochem. 2020 Sep;472(1-2):231-240. doi: 10.1007/s11010-020-03801-y. Epub 2020 Jun 23.
10
Targeting the Mitochondria in Heart Failure: A Translational Perspective.
JACC Basic Transl Sci. 2020 Jan 27;5(1):88-106. doi: 10.1016/j.jacbts.2019.07.009. eCollection 2020 Jan.

本文引用的文献

1
Intramitochondrial signaling: interactions among mitoKATP, PKCepsilon, ROS, and MPT.
Am J Physiol Heart Circ Physiol. 2008 Aug;295(2):H874-82. doi: 10.1152/ajpheart.01189.2007. Epub 2008 Jun 27.
2
The nitric oxide-iron interplay in mammalian cells: transport and storage of dinitrosyl iron complexes.
Biochim Biophys Acta. 2008 Apr;1780(4):638-51. doi: 10.1016/j.bbagen.2007.12.009. Epub 2008 Jan 16.
3
Ischemic defects in the electron transport chain increase the production of reactive oxygen species from isolated rat heart mitochondria.
Am J Physiol Cell Physiol. 2008 Feb;294(2):C460-6. doi: 10.1152/ajpcell.00211.2007. Epub 2007 Dec 12.
4
The roles of thiol-derived radicals in the use of 2',7'-dichlorodihydrofluorescein as a probe for oxidative stress.
Free Radic Biol Med. 2008 Jan 1;44(1):56-62. doi: 10.1016/j.freeradbiomed.2007.09.005. Epub 2007 Sep 19.
5
cGMP signalling in pre- and post-conditioning: the role of mitochondria.
Cardiovasc Res. 2008 Jan 15;77(2):344-52. doi: 10.1093/cvr/cvm050. Epub 2007 Oct 25.
6
Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects.
Free Radic Biol Med. 2007 Oct 1;43(7):995-1022. doi: 10.1016/j.freeradbiomed.2007.06.026. Epub 2007 Jul 10.
7
Nitrite augments tolerance to ischemia/reperfusion injury via the modulation of mitochondrial electron transfer.
J Exp Med. 2007 Sep 3;204(9):2089-102. doi: 10.1084/jem.20070198. Epub 2007 Aug 6.
8
Oxidant stress during simulated ischemia primes cardiomyocytes for cell death during reperfusion.
J Biol Chem. 2007 Jun 29;282(26):19133-43. doi: 10.1074/jbc.M701917200. Epub 2007 May 7.
10
Iron uptake and metabolism in the new millennium.
Trends Cell Biol. 2007 Feb;17(2):93-100. doi: 10.1016/j.tcb.2006.12.003. Epub 2006 Dec 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验