Suppr超能文献

心脏线粒体孔开放诱导的活性氧生成:复合物III的作用。

Reactive oxygen species production induced by pore opening in cardiac mitochondria: The role of complex III.

作者信息

Korge Paavo, Calmettes Guillaume, John Scott A, Weiss James N

机构信息

From the UCLA Cardiovascular Research Laboratory and the Departments of Medicine (Cardiology) and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095.

From the UCLA Cardiovascular Research Laboratory and the Departments of Medicine (Cardiology) and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095

出版信息

J Biol Chem. 2017 Jun 16;292(24):9882-9895. doi: 10.1074/jbc.M116.768317. Epub 2017 Apr 27.

Abstract

Recent evidence has implicated succinate-driven reverse electron transport (RET) through complex I as a major source of damaging reactive oxygen species (ROS) underlying reperfusion injury after prolonged cardiac ischemia. However, this explanation may be incomplete, because RET on reperfusion is self-limiting and therefore transient. RET can only generate ROS when mitochondria are well polarized, and it ceases when permeability transition pores (PTP) open during reperfusion. Because prolonged ischemia/reperfusion also damages electron transport complexes, we investigated whether such damage could lead to ROS production after PTP opening has occurred. Using isolated cardiac mitochondria, we demonstrate a novel mechanism by which antimycin-inhibited complex III generates significant amounts of ROS in the presence of Mg and NAD and the absence of exogenous substrates upon inner membrane pore formation by alamethicin or Ca-induced PTP opening. We show that HO production under these conditions is related to Mg-dependent NADH generation by malic enzyme. HO production is blocked by stigmatellin, indicating its origin from complex III, and by piericidin, demonstrating the importance of NADH-related ubiquinone reduction for ROS production under these conditions. For maximal ROS production, the rate of NADH generation has to be equal or below that of NADH oxidation, as further increases in [NADH] elevate ubiquinol-related complex III reduction beyond the optimal range for ROS generation. These results suggest that if complex III is damaged during ischemia, PTP opening may result in succinate/malate-fueled ROS production from complex III due to activation of malic enzyme by increases in matrix [Mg], [NAD], and [ADP].

摘要

最近的证据表明,通过复合体I的琥珀酸驱动的逆向电子传递(RET)是长时间心脏缺血后再灌注损伤背后破坏性活性氧(ROS)的主要来源。然而,这种解释可能并不完整,因为再灌注时的RET是自我限制的,因此是短暂的。RET只有在线粒体高度极化时才能产生活性氧,而再灌注期间通透性转换孔(PTP)开放时它就会停止。由于长时间的缺血/再灌注也会损害电子传递复合体,我们研究了这种损伤在PTP开放后是否会导致活性氧的产生。使用分离的心脏线粒体,我们证明了一种新机制,即抗霉素抑制的复合体III在存在镁离子和烟酰胺腺嘌呤二核苷酸(NAD)且无外源底物的情况下,在短杆菌肽形成内膜孔或钙离子诱导PTP开放时会产生大量活性氧。我们表明,在这些条件下过氧化氢(HO)的产生与苹果酸酶依赖镁离子产生NADH有关。HO的产生被鱼藤酮抑制,表明其起源于复合体III,被粉蝶霉素A抑制,证明了在这些条件下与NADH相关的泛醌还原对活性氧产生的重要性。为了实现最大的活性氧产生,NADH的产生速率必须等于或低于NADH的氧化速率,因为[NADH]的进一步增加会使与泛醇相关的复合体III还原超过活性氧产生的最佳范围。这些结果表明,如果复合体III在缺血期间受损,PTP开放可能会由于基质中[Mg]、[NAD]和[ADP]的增加激活苹果酸酶,导致复合体III产生由琥珀酸/苹果酸驱动的活性氧。

相似文献

1
Reactive oxygen species production induced by pore opening in cardiac mitochondria: The role of complex III.
J Biol Chem. 2017 Jun 16;292(24):9882-9895. doi: 10.1074/jbc.M116.768317. Epub 2017 Apr 27.
2
Reactive oxygen species production induced by pore opening in cardiac mitochondria: The role of complex II.
J Biol Chem. 2017 Jun 16;292(24):9896-9905. doi: 10.1074/jbc.M116.768325. Epub 2017 Apr 27.
4
Production of reactive oxygen species by mitochondria: central role of complex III.
J Biol Chem. 2003 Sep 19;278(38):36027-31. doi: 10.1074/jbc.M304854200. Epub 2003 Jul 2.
5
Q-site inhibitor induced ROS production of mitochondrial complex II is attenuated by TCA cycle dicarboxylates.
Biochim Biophys Acta. 2013 Oct;1827(10):1156-64. doi: 10.1016/j.bbabio.2013.06.005. Epub 2013 Jun 22.
7
Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species.
J Neurosci. 2004 Sep 8;24(36):7779-88. doi: 10.1523/JNEUROSCI.1899-04.2004.
8
Oxygen-dependence of mitochondrial ROS production as detected by Amplex Red assay.
Redox Biol. 2018 Jul;17:192-199. doi: 10.1016/j.redox.2018.04.014. Epub 2018 Apr 14.
10
Reactive oxygen species production in energized cardiac mitochondria during hypoxia/reoxygenation: modulation by nitric oxide.
Circ Res. 2008 Oct 10;103(8):873-80. doi: 10.1161/CIRCRESAHA.108.180869. Epub 2008 Sep 5.

引用本文的文献

1
High-intensity interval training improves mitochondrial function and attenuates cardiomyocytes damage in ischemia-reperfusion.
Int J Cardiol Heart Vasc. 2025 Jul 25;60:101756. doi: 10.1016/j.ijcha.2025.101756. eCollection 2025 Oct.
2
Cellular crosstalk in fibrosis: insights into macrophage and fibroblast dynamics.
J Biol Chem. 2025 May 5:110203. doi: 10.1016/j.jbc.2025.110203.
5
Vitamin C as Scavenger of Reactive Oxygen Species during Healing after Myocardial Infarction.
Int J Mol Sci. 2024 Mar 7;25(6):3114. doi: 10.3390/ijms25063114.
6
Mitochondrial Permeability Transition in Stem Cells, Development, and Disease.
Adv Exp Med Biol. 2023;1409:1-22. doi: 10.1007/5584_2022_720.
9
Diazoxide Post-conditioning Activates the HIF-1/HRE Pathway to Induce Myocardial Protection in Hypoxic/Reoxygenated Cardiomyocytes.
Front Cardiovasc Med. 2021 Dec 6;8:711465. doi: 10.3389/fcvm.2021.711465. eCollection 2021.

本文引用的文献

1
Reactive oxygen species production induced by pore opening in cardiac mitochondria: The role of complex II.
J Biol Chem. 2017 Jun 16;292(24):9896-9905. doi: 10.1074/jbc.M116.768325. Epub 2017 Apr 27.
4
A Unifying Mechanism for Mitochondrial Superoxide Production during Ischemia-Reperfusion Injury.
Cell Metab. 2016 Feb 9;23(2):254-63. doi: 10.1016/j.cmet.2015.12.009. Epub 2016 Jan 14.
6
Increased reactive oxygen species production during reductive stress: The roles of mitochondrial glutathione and thioredoxin reductases.
Biochim Biophys Acta. 2015 Jun-Jul;1847(6-7):514-25. doi: 10.1016/j.bbabio.2015.02.012. Epub 2015 Feb 19.
7
Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS.
Nature. 2014 Nov 20;515(7527):431-435. doi: 10.1038/nature13909. Epub 2014 Nov 5.
8
Kinetic evidence against partitioning of the ubiquinone pool and the catalytic relevance of respiratory-chain supercomplexes.
Proc Natl Acad Sci U S A. 2014 Nov 4;111(44):15735-40. doi: 10.1073/pnas.1413855111. Epub 2014 Oct 20.
9
The 2-oxoacid dehydrogenase complexes in mitochondria can produce superoxide/hydrogen peroxide at much higher rates than complex I.
J Biol Chem. 2014 Mar 21;289(12):8312-25. doi: 10.1074/jbc.M113.545301. Epub 2014 Feb 10.
10
Cardiac mitochondria and reactive oxygen species generation.
Circ Res. 2014 Jan 31;114(3):524-37. doi: 10.1161/CIRCRESAHA.114.300559.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验