Suppr超能文献

双色微阵列实验中的高级斑点质量分析。

Advanced spot quality analysis in two-colour microarray experiments.

作者信息

Yatskou Mikalai, Novikov Eugene, Vetter Guillaume, Muller Arnaud, Barillot Emmanuel, Vallar Laurent, Friederich Evelyne

机构信息

Microarray Center/LBMAGM, CRP-Santé, 84 Rue Val Fleuri, L-1526, Luxembourg.

出版信息

BMC Res Notes. 2008 Sep 17;1:80. doi: 10.1186/1756-0500-1-80.

Abstract

BACKGROUND

Image analysis of microarrays and, in particular, spot quantification and spot quality control, is one of the most important steps in statistical analysis of microarray data. Recent methods of spot quality control are still in early age of development, often leading to underestimation of true positive microarray features and, consequently, to loss of important biological information. Therefore, improving and standardizing the statistical approaches of spot quality control are essential to facilitate the overall analysis of microarray data and subsequent extraction of biological information.

FINDINGS

We evaluated the performance of two image analysis packages MAIA and GenePix (GP) using two complementary experimental approaches with a focus on the statistical analysis of spot quality factors. First, we developed control microarrays with a priori known fluorescence ratios to verify the accuracy and precision of the ratio estimation of signal intensities. Next, we developed advanced semi-automatic protocols of spot quality evaluation in MAIA and GP and compared their performance with available facilities of spot quantitative filtering in GP. We evaluated these algorithms for standardised spot quality analysis in a whole-genome microarray experiment assessing well-characterised transcriptional modifications induced by the transcription regulator SNAI1. Using a set of RT-PCR or qRT-PCR validated microarray data, we found that the semi-automatic protocol of spot quality control we developed with MAIA allowed recovering approximately 13% more spots and 38% more differentially expressed genes (at FDR = 5%) than GP with default spot filtering conditions.

CONCLUSION

Careful control of spot quality characteristics with advanced spot quality evaluation can significantly increase the amount of confident and accurate data resulting in more meaningful biological conclusions.

摘要

背景

微阵列的图像分析,尤其是斑点定量和斑点质量控制,是微阵列数据统计分析中最重要的步骤之一。目前的斑点质量控制方法仍处于发展初期,常常导致对真正阳性微阵列特征的低估,从而导致重要生物学信息的丢失。因此,改进和规范斑点质量控制的统计方法对于促进微阵列数据的整体分析以及后续生物学信息的提取至关重要。

研究结果

我们使用两种互补的实验方法评估了两个图像分析软件包MAIA和GenePix(GP)的性能,重点是斑点质量因素的统计分析。首先,我们开发了具有先验已知荧光比率的对照微阵列,以验证信号强度比率估计的准确性和精确性。接下来,我们在MAIA和GP中开发了先进的半自动斑点质量评估方案,并将它们的性能与GP中可用的斑点定量过滤功能进行了比较。在一项全基因组微阵列实验中,我们评估了这些用于标准化斑点质量分析的算法,该实验评估了由转录调节因子SNAI1诱导的特征明确的转录修饰。使用一组经逆转录聚合酶链反应(RT-PCR)或实时定量逆转录聚合酶链反应(qRT-PCR)验证的微阵列数据,我们发现,与具有默认斑点过滤条件的GP相比,我们用MAIA开发的半自动斑点质量控制方案能够多找回约13%的斑点和38%的差异表达基因(在错误发现率为5%时)。

结论

通过先进的斑点质量评估仔细控制斑点质量特征,可以显著增加可靠且准确的数据量,从而得出更有意义的生物学结论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bc3/2556690/45ed1ab36c41/1756-0500-1-80-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验