Wieser Stefan, Axmann Markus, Schütz Gerhard J
Biophysics Institute, Johannes Kepler University Linz, A-4040 Linz, Austria.
Biophys J. 2008 Dec 15;95(12):5988-6001. doi: 10.1529/biophysj.108.141655. Epub 2008 Sep 19.
We propose here an approach for the analysis of single-molecule trajectories which is based on a comprehensive comparison of an experimental data set with multiple Monte Carlo simulations of the diffusion process. It allows quantitative data analysis, particularly whenever analytical treatment of a model is infeasible. Simulations are performed on a discrete parameter space and compared with the experimental results by a nonparametric statistical test. The method provides a matrix of p-values that assess the probability for having observed the experimental data at each setting of the model parameters. We show the testing approach for three typical situations observed in the cellular plasma membrane: i), free Brownian motion of the tracer, ii), hop diffusion of the tracer in a periodic meshwork of squares, and iii), transient binding of the tracer to slowly diffusing structures. By plotting the p-value as a function of the model parameters, one can easily identify the most consistent parameter settings but also recover mutual dependencies and ambiguities which are difficult to determine by standard fitting routines. Finally, we used the test to reanalyze previous data obtained on the diffusion of the glycosylphosphatidylinositol-protein CD59 in the plasma membrane of the human T24 cell line.
我们在此提出一种用于分析单分子轨迹的方法,该方法基于将一个实验数据集与扩散过程的多个蒙特卡罗模拟进行全面比较。它允许进行定量数据分析,特别是在模型的解析处理不可行的情况下。模拟在离散参数空间上进行,并通过非参数统计检验与实验结果进行比较。该方法提供了一个p值矩阵,用于评估在模型参数的每种设置下观察到实验数据的概率。我们展示了针对在细胞质膜中观察到的三种典型情况的测试方法:i),示踪剂的自由布朗运动,ii),示踪剂在正方形周期性网格中的跳跃扩散,以及iii),示踪剂与缓慢扩散结构的瞬时结合。通过将p值绘制为模型参数的函数,人们不仅可以轻松识别最一致的参数设置,还可以恢复相互依赖性和模糊性,而这些通过标准拟合程序很难确定。最后,我们使用该测试重新分析了先前获得的关于糖基磷脂酰肌醇蛋白CD59在人T24细胞系质膜中扩散的数据。