Suppr超能文献

莱茵衣藻视紫红质-1和-2的嵌合体表现出与视紫红质-2不同的光诱导结构变化。

Chimeras of channelrhodopsin-1 and -2 from Chlamydomonas reinhardtii exhibit distinctive light-induced structural changes from channelrhodopsin-2.

作者信息

Inaguma Asumi, Tsukamoto Hisao, Kato Hideaki E, Kimura Tetsunari, Ishizuka Toru, Oishi Satomi, Yawo Hiromu, Nureki Osamu, Furutani Yuji

机构信息

From the Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan, PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan, Department of Structural Molecular Science, Graduate University for Advanced Studies (SOKENDAI), 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan.

From the Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan, Department of Structural Molecular Science, Graduate University for Advanced Studies (SOKENDAI), 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan.

出版信息

J Biol Chem. 2015 May 1;290(18):11623-34. doi: 10.1074/jbc.M115.642256. Epub 2015 Mar 21.

Abstract

Channelrhodopsin-2 (ChR2) from the green alga Chlamydomonas reinhardtii functions as a light-gated cation channel that has been developed as an optogenetic tool to stimulate specific nerve cells in animals and control their behavior by illumination. The molecular mechanism of ChR2 has been extensively studied by a variety of spectroscopic methods, including light-induced difference Fourier transform infrared (FTIR) spectroscopy, which is sensitive to structural changes in the protein upon light activation. An atomic structure of channelrhodopsin was recently determined by x-ray crystallography using a chimera of channelrhodopsin-1 (ChR1) and ChR2. Electrophysiological studies have shown that ChR1/ChR2 chimeras are less desensitized upon continuous illumination than native ChR2, implying that there are some structural differences between ChR2 and chimeras. In this study, we applied light-induced difference FTIR spectroscopy to ChR2 and ChR1/ChR2 chimeras to determine the molecular basis underlying these functional differences. Upon continuous illumination, ChR1/ChR2 chimeras exhibited structural changes distinct from those in ChR2. In particular, the protonation state of a glutamate residue, Glu-129 (Glu-90 in ChR2 numbering), in the ChR chimeras is not changed as dramatically as in ChR2. Moreover, using mutants stabilizing particular photointermediates as well as time-resolved measurements, we identified some differences between the major photointermediates of ChR2 and ChR1/ChR2 chimeras. Taken together, our data indicate that the gating and desensitizing processes in ChR1/ChR2 chimeras are different from those in ChR2 and that these differences should be considered in the rational design of new optogenetic tools based on channelrhodopsins.

摘要

来自莱茵衣藻的通道视紫红质-2(ChR2)作为一种光门控阳离子通道发挥作用,它已被开发成为一种光遗传学工具,用于刺激动物体内特定的神经细胞,并通过光照来控制其行为。ChR2的分子机制已通过多种光谱方法进行了广泛研究,包括光诱导差分傅里叶变换红外(FTIR)光谱,该方法对光激活后蛋白质的结构变化敏感。最近,通过X射线晶体学使用通道视紫红质-1(ChR1)和ChR2的嵌合体确定了通道视紫红质的原子结构。电生理研究表明,ChR1/ChR2嵌合体在持续光照下比天然ChR2脱敏程度更低,这意味着ChR2与嵌合体之间存在一些结构差异。在本研究中,我们将光诱导差分FTIR光谱应用于ChR2和ChR1/ChR2嵌合体,以确定这些功能差异背后的分子基础。在持续光照下,ChR1/ChR2嵌合体表现出与ChR2不同的结构变化。特别是,ChR嵌合体中谷氨酸残基Glu-129(按照ChR2编号为Glu-90)的质子化状态变化不如ChR2中那么显著。此外,我们使用稳定特定光中间体的突变体以及时间分辨测量,确定了ChR2和ChR1/ChR2嵌合体主要光中间体之间的一些差异。综上所述,我们的数据表明,ChR1/ChR2嵌合体中的门控和脱敏过程与ChR2中的不同,在基于通道视紫红质的新型光遗传学工具的合理设计中应考虑这些差异。

相似文献

2
Proton transfer reactions in the red light-activatable channelrhodopsin variant ReaChR and their relevance for its function.
J Biol Chem. 2017 Aug 25;292(34):14205-14216. doi: 10.1074/jbc.M117.779629. Epub 2017 Jun 28.
3
Channelrhodopsin-2, a directly light-gated cation-selective membrane channel.
Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):13940-5. doi: 10.1073/pnas.1936192100. Epub 2003 Nov 13.
4
Glu 87 of channelrhodopsin-1 causes pH-dependent color tuning and fast photocurrent inactivation.
Photochem Photobiol. 2009 Mar-Apr;85(2):564-9. doi: 10.1111/j.1751-1097.2008.00519.x. Epub 2009 Jan 19.
5
Crystal structure of the channelrhodopsin light-gated cation channel.
Nature. 2012 Jan 22;482(7385):369-74. doi: 10.1038/nature10870.
6
Atomistic Study of Intramolecular Interactions in the Closed-State Channelrhodopsin Chimera, C1C2.
Biophys J. 2017 Mar 14;112(5):943-952. doi: 10.1016/j.bpj.2017.01.023.
7
Glutamate residue 90 in the predicted transmembrane domain 2 is crucial for cation flux through channelrhodopsin 2.
Biochem Biophys Res Commun. 2011 Jul 15;410(4):737-43. doi: 10.1016/j.bbrc.2011.06.024. Epub 2011 Jun 12.
8
Characterization of engineered channelrhodopsin variants with improved properties and kinetics.
Biophys J. 2009 Mar 4;96(5):1803-14. doi: 10.1016/j.bpj.2008.11.034.
9
Resonance Raman and FTIR spectroscopic characterization of the closed and open states of channelrhodopsin-1.
FEBS Lett. 2014 Jun 27;588(14):2301-6. doi: 10.1016/j.febslet.2014.05.019. Epub 2014 May 21.
10
Molecular determinants differentiating photocurrent properties of two channelrhodopsins from chlamydomonas.
J Biol Chem. 2009 Feb 27;284(9):5685-96. doi: 10.1074/jbc.M807632200. Epub 2008 Dec 22.

引用本文的文献

1
Metadynamics simulations reveal mechanisms of Na+ and Ca2+ transport in two open states of the channelrhodopsin chimera, C1C2.
PLoS One. 2024 Sep 6;19(9):e0309553. doi: 10.1371/journal.pone.0309553. eCollection 2024.
2
The effect on ion channel of different protonation states of E90 in channelrhodopsin-2: a molecular dynamics simulation.
RSC Adv. 2021 Apr 19;11(24):14542-14551. doi: 10.1039/d1ra01879e. eCollection 2021 Apr 15.
4
Structure-Function Relationship of Channelrhodopsins.
Adv Exp Med Biol. 2021;1293:35-53. doi: 10.1007/978-981-15-8763-4_3.
5
Gate-keeper of ion transport-a highly conserved helix-3 tryptophan in a channelrhodopsin chimera, C1C2/ChRWR.
Biophys Physicobiol. 2020 Jun 9;17:59-70. doi: 10.2142/biophysico.BSJ-2020007. eCollection 2020.
6
Spectroscopic study of the transmembrane domain of a rhodopsin-phosphodiesterase fusion protein from a unicellular eukaryote.
J Biol Chem. 2019 Mar 8;294(10):3432-3443. doi: 10.1074/jbc.RA118.006277. Epub 2019 Jan 8.
7
An Atomistic Model of a Precursor State of Light-Induced Channel Opening of Channelrhodopsin.
Biophys J. 2018 Oct 2;115(7):1281-1291. doi: 10.1016/j.bpj.2018.08.024. Epub 2018 Aug 27.
8
Spatiotemporal Control of GPR37 Signaling and Its Behavioral Effects by Optogenetics.
Front Mol Neurosci. 2018 Mar 28;11:95. doi: 10.3389/fnmol.2018.00095. eCollection 2018.
9
Retinal isomerization and water-pore formation in channelrhodopsin-2.
Proc Natl Acad Sci U S A. 2018 Apr 3;115(14):3557-3562. doi: 10.1073/pnas.1700091115. Epub 2018 Mar 19.
10
Structural properties determining low K affinity of the selectivity filter in the TWIK1 K channel.
J Biol Chem. 2018 May 4;293(18):6969-6984. doi: 10.1074/jbc.RA118.001817. Epub 2018 Mar 15.

本文引用的文献

1
Dynamics of Dangling Bonds of Water Molecules in pharaonis Halorhodopsin during Chloride Ion Transportation.
J Phys Chem Lett. 2012 Oct 18;3(20):2964-9. doi: 10.1021/jz301287n. Epub 2012 Sep 28.
2
Kinetic evaluation of photosensitivity in bi-stable variants of chimeric channelrhodopsins.
PLoS One. 2015 Mar 19;10(3):e0119558. doi: 10.1371/journal.pone.0119558. eCollection 2015.
3
Early formation of the ion-conducting pore in channelrhodopsin-2.
Angew Chem Int Ed Engl. 2015 Apr 13;54(16):4953-7. doi: 10.1002/anie.201410180. Epub 2014 Dec 23.
5
Retinal chromophore structure and Schiff base interactions in red-shifted channelrhodopsin-1 from Chlamydomonas augustae.
Biochemistry. 2014 Jun 24;53(24):3961-70. doi: 10.1021/bi500445c. Epub 2014 Jun 16.
6
Resonance Raman and FTIR spectroscopic characterization of the closed and open states of channelrhodopsin-1.
FEBS Lett. 2014 Jun 27;588(14):2301-6. doi: 10.1016/j.febslet.2014.05.019. Epub 2014 May 21.
7
Structure-guided transformation of channelrhodopsin into a light-activated chloride channel.
Science. 2014 Apr 25;344(6182):420-4. doi: 10.1126/science.1252367.
8
Conversion of channelrhodopsin into a light-gated chloride channel.
Science. 2014 Apr 25;344(6182):409-12. doi: 10.1126/science.1249375. Epub 2014 Mar 27.
9
Water-containing hydrogen-bonding network in the active center of channelrhodopsin.
J Am Chem Soc. 2014 Mar 5;136(9):3475-82. doi: 10.1021/ja410836g. Epub 2014 Feb 21.
10
Channelrhodopsin unchained: structure and mechanism of a light-gated cation channel.
Biochim Biophys Acta. 2014 May;1837(5):626-42. doi: 10.1016/j.bbabio.2013.10.014. Epub 2013 Nov 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验