Laboratoire Psychologie de la Perception, Centre National de la Recherche Scientifique and Université Paris Descartes Paris, France.
Front Neuroinform. 2010 Mar 5;4:2. doi: 10.3389/neuro.11.002.2010. eCollection 2010.
Spiking models can accurately predict the spike trains produced by cortical neurons in response to somatically injected currents. Since the specific characteristics of the model depend on the neuron, a computational method is required to fit models to electrophysiological recordings. The fitting procedure can be very time consuming both in terms of computer simulations and in terms of code writing. We present algorithms to fit spiking models to electrophysiological data (time-varying input and spike trains) that can run in parallel on graphics processing units (GPUs). The model fitting library is interfaced with Brian, a neural network simulator in Python. If a GPU is present it uses just-in-time compilation to translate model equations into optimized code. Arbitrary models can then be defined at script level and run on the graphics card. This tool can be used to obtain empirically validated spiking models of neurons in various systems. We demonstrate its use on public data from the INCF Quantitative Single-Neuron Modeling 2009 competition by comparing the performance of a number of neuron spiking models.
尖峰模型可以准确地预测皮质神经元对体细胞注入电流的反应所产生的尖峰序列。由于模型的具体特征取决于神经元,因此需要一种计算方法来将模型拟合到电生理记录中。拟合过程在计算机模拟和代码编写方面都非常耗时。我们提出了将尖峰模型拟合到电生理数据(时变输入和尖峰序列)的算法,这些算法可以在图形处理单元(GPU)上并行运行。模型拟合库与 Brian 接口,这是一个用 Python 编写的神经网络模拟器。如果有 GPU,则使用即时编译将模型方程转换为优化代码。然后可以在脚本级别定义任意模型,并在显卡上运行。该工具可用于获得各种系统中神经元的经验验证的尖峰模型。我们通过比较一些神经元尖峰模型的性能,展示了其在 INCF 定量单细胞建模 2009 竞赛的公共数据上的应用。