Suppr超能文献

活的白色念珠菌可抑制吞噬细胞中活性氧的产生。

Live Candida albicans suppresses production of reactive oxygen species in phagocytes.

作者信息

Wellington Melanie, Dolan Kristy, Krysan Damian J

机构信息

Department of Pediatrics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave., Box 690, Rochester, NY 14642, USA.

出版信息

Infect Immun. 2009 Jan;77(1):405-13. doi: 10.1128/IAI.00860-08. Epub 2008 Nov 3.

Abstract

Production of reactive oxygen species (ROS) is an important aspect of phagocyte-mediated host responses. Since phagocytes play a crucial role in the host response to Candida albicans, we examined the ability of Candida to modulate phagocyte ROS production. ROS production was measured in the murine macrophage cell line J774 and in primary phagocytes using luminol-enhanced chemiluminescence. J774 cells, murine polymorphonuclear leukocytes (PMN), human monocytes, and human PMN treated with live C. albicans produced significantly less ROS than phagocytes treated with heat-killed C. albicans. Live C. albicans also suppressed ROS production in murine bone marrow-derived macrophages from C57BL/6 mice, but not from BALB/c mice. Live C. albicans also suppressed ROS in response to external stimuli. C. albicans and Candida glabrata suppressed ROS production by phagocytes, whereas Saccharomyces cerevisiae stimulated ROS production. The cell wall is the initial point of contact between Candida and phagocytes, but isolated cell walls from both heat-killed and live C. albicans stimulated ROS production. Heat-killed C. albicans has increased surface exposure of 1,3-beta-glucan, a cell wall component that can stimulate phagocytes. To determine whether surface 1,3-beta-glucan exposure accounted for the difference in ROS production, live C. albicans cells were treated with a sublethal dose of caspofungin to increase surface 1,3-beta-glucan exposure. Caspofungin-treated C. albicans was fully able to suppress ROS production, indicating that suppression of ROS overrides stimulatory signals from 1,3-beta-glucan. These studies indicate that live C. albicans actively suppresses ROS production in phagocytes in vitro, which may represent an important immune evasion mechanism.

摘要

活性氧(ROS)的产生是吞噬细胞介导的宿主反应的一个重要方面。由于吞噬细胞在宿主对白色念珠菌的反应中起关键作用,我们研究了白色念珠菌调节吞噬细胞ROS产生的能力。使用鲁米诺增强化学发光法在小鼠巨噬细胞系J774和原代吞噬细胞中测量ROS的产生。用活的白色念珠菌处理的J774细胞、小鼠多形核白细胞(PMN)、人单核细胞和人PMN产生的ROS明显少于用热灭活的白色念珠菌处理的吞噬细胞。活的白色念珠菌还抑制了C57BL/6小鼠骨髓来源的巨噬细胞中的ROS产生,但对BALB/c小鼠的骨髓来源巨噬细胞没有抑制作用。活的白色念珠菌也抑制对外界刺激产生的ROS。白色念珠菌和光滑念珠菌抑制吞噬细胞产生ROS,而酿酒酵母则刺激ROS产生。细胞壁是念珠菌与吞噬细胞接触的起始点,但热灭活和活的白色念珠菌分离出的细胞壁均刺激ROS产生。热灭活的白色念珠菌增加了细胞壁成分1,3-β-葡聚糖的表面暴露,该成分可刺激吞噬细胞。为了确定表面1,3-β-葡聚糖暴露是否是ROS产生差异的原因,用亚致死剂量的卡泊芬净处理活的白色念珠菌细胞以增加表面1,3-β-葡聚糖暴露。经卡泊芬净处理的白色念珠菌完全能够抑制ROS产生,这表明ROS的抑制作用超过了来自1,3-β-葡聚糖的刺激信号。这些研究表明,活的白色念珠菌在体外能积极抑制吞噬细胞中ROS的产生,这可能是一种重要的免疫逃避机制。

相似文献

1
Live Candida albicans suppresses production of reactive oxygen species in phagocytes.
Infect Immun. 2009 Jan;77(1):405-13. doi: 10.1128/IAI.00860-08. Epub 2008 Nov 3.
2
Impaired phagocytosis directs human monocyte activation in response to fungal derived β-glucan particles.
Eur J Immunol. 2018 May;48(5):757-770. doi: 10.1002/eji.201747224. Epub 2018 Feb 5.
5
Recognition of yeast by murine macrophages requires mannan but not glucan.
Eukaryot Cell. 2010 Nov;9(11):1776-87. doi: 10.1128/EC.00156-10. Epub 2010 Sep 10.
8
Neutrophil activation by Candida glabrata but not Candida albicans promotes fungal uptake by monocytes.
Cell Microbiol. 2015 Sep;17(9):1259-76. doi: 10.1111/cmi.12443. Epub 2015 May 5.

引用本文的文献

1
Infections: The Role of Saliva in Oral Health-A Narrative Review.
Microorganisms. 2025 Mar 23;13(4):717. doi: 10.3390/microorganisms13040717.
2
Fungal extracellular vesicle-mediated regulation: from virulence factor to clinical application.
Front Microbiol. 2023 Sep 15;14:1205477. doi: 10.3389/fmicb.2023.1205477. eCollection 2023.
3
Innate Immune Training of Human Macrophages by Cathelicidin Analogs.
Front Immunol. 2022 Jul 26;13:777530. doi: 10.3389/fimmu.2022.777530. eCollection 2022.
4
Extracellular trap can be trained as a memory response.
Virulence. 2022 Dec;13(1):471-482. doi: 10.1080/21505594.2022.2046950.
6
In vitro infection models to study fungal-host interactions.
FEMS Microbiol Rev. 2021 Sep 8;45(5). doi: 10.1093/femsre/fuab005.
7
Tobacco Hornworm () caterpillars as a novel host model for the study of fungal virulence and drug efficacy.
Virulence. 2020 Dec;11(1):1075-1089. doi: 10.1080/21505594.2020.1806665.
8
The Dual Function of the Fungal Toxin Candidalysin during -Macrophage Interaction and Virulence.
Toxins (Basel). 2020 Jul 24;12(8):469. doi: 10.3390/toxins12080469.
9
Type I Interferons Ameliorate Zinc Intoxication of Candida glabrata by Macrophages and Promote Fungal Immune Evasion.
iScience. 2020 May 22;23(5):101121. doi: 10.1016/j.isci.2020.101121. Epub 2020 May 4.
10
Immunopathology of Recurrent Vulvovaginal Infections: New Aspects and Research Directions.
Front Immunol. 2019 Aug 28;10:2034. doi: 10.3389/fimmu.2019.02034. eCollection 2019.

本文引用的文献

1
Isolation and cytotoxicity of low-molecular-weight metabolites of Candida albicans.
Front Biosci. 2008 May 1;13:6893-904. doi: 10.2741/3197.
2
Measurement of respiratory burst products generated by professional phagocytes.
Methods Mol Biol. 2007;412:349-63. doi: 10.1007/978-1-59745-467-4_23.
4
An integrated model of the recognition of Candida albicans by the innate immune system.
Nat Rev Microbiol. 2008 Jan;6(1):67-78. doi: 10.1038/nrmicro1815.
5
Monocyte responses to Candida albicans are enhanced by antibody in cooperation with antibody-independent pathogen recognition.
FEMS Immunol Med Microbiol. 2007 Oct;51(1):70-83. doi: 10.1111/j.1574-695X.2007.00278.x. Epub 2007 Jul 4.
6
Candida species fail to produce the immunosuppressive secondary metabolite gliotoxin in vitro.
FEMS Yeast Res. 2007 Sep;7(6):986-92. doi: 10.1111/j.1567-1364.2007.00256.x. Epub 2007 May 31.
8
Reactive oxygen and nitrogen species as signaling molecules regulating neutrophil function.
Free Radic Biol Med. 2007 Jan 15;42(2):153-64. doi: 10.1016/j.freeradbiomed.2006.09.030. Epub 2006 Oct 28.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验