Beeche Cameron, Dib Marie-Joe, Zhao Bingxin, Azzo Joe David, Tavolinejad Hamed, Maynard Hannah, Duda Jeffrey Thomas, Gee James, Salman Oday, Witschey Walter R, Chirinos Julio
Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
Pulse (Basel). 2025 Jan 27;13(1):72-79. doi: 10.1159/000543613. eCollection 2025 Jan-Dec.
Aortic structure impacts cardiovascular health through multiple mechanisms. Aortic structural degeneration occurs with aging, increasing left ventricular afterload and promoting increased arterial pulsatility and target organ damage. Despite the impact of aortic structure on cardiovascular health, three-dimensional (3D) aortic geometry has not been comprehensively characterized in large populations.
We segmented the complete thoracic aorta using a deep learning architecture and used morphological image operations to extract multiple aortic geometric phenotypes (AGPs, including diameter, length, curvature, and tortuosity) across various subsegments of the thoracic aorta. We deployed our segmentation approach on imaging scans from 54,241 participants in the UK Biobank and 8,456 participants in the Penn Medicine Biobank.
Our method provides a fully automated approach toward quantifying the three-dimensional structural parameters of the aorta. This approach expands the available phenotypes in two large representative biobanks and will allow large-scale studies to elucidate the biology and clinical consequences of aortic degeneration related to aging and disease states.
主动脉结构通过多种机制影响心血管健康。主动脉结构退变随年龄增长而发生,增加左心室后负荷,并促使动脉搏动性增加和靶器官损害。尽管主动脉结构对心血管健康有影响,但在大量人群中尚未全面表征三维(3D)主动脉几何形状。
我们使用深度学习架构对整个胸主动脉进行分割,并使用形态学图像操作来提取胸主动脉各个子段的多种主动脉几何表型(AGP,包括直径、长度、曲率和迂曲度)。我们将我们的分割方法应用于英国生物银行54241名参与者和宾夕法尼亚大学医学中心生物银行8456名参与者的影像扫描。
我们的方法提供了一种全自动方法来量化主动脉的三维结构参数。这种方法扩展了两个大型代表性生物银行中可用的表型,并将使大规模研究能够阐明与衰老和疾病状态相关的主动脉退变的生物学特性和临床后果。