Suppr超能文献

胸主动脉三维几何学

Thoracic Aortic Three-Dimensional Geometry.

作者信息

Beeche Cameron, Dib Marie-Joe, Zhao Bingxin, Azzo Joe David, Tavolinejad Hamed, Maynard Hannah, Duda Jeffrey Thomas, Gee James, Salman Oday, Witschey Walter R, Chirinos Julio

机构信息

Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.

Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.

出版信息

Pulse (Basel). 2025 Jan 27;13(1):72-79. doi: 10.1159/000543613. eCollection 2025 Jan-Dec.

Abstract

INTRODUCTION

Aortic structure impacts cardiovascular health through multiple mechanisms. Aortic structural degeneration occurs with aging, increasing left ventricular afterload and promoting increased arterial pulsatility and target organ damage. Despite the impact of aortic structure on cardiovascular health, three-dimensional (3D) aortic geometry has not been comprehensively characterized in large populations.

METHODS

We segmented the complete thoracic aorta using a deep learning architecture and used morphological image operations to extract multiple aortic geometric phenotypes (AGPs, including diameter, length, curvature, and tortuosity) across various subsegments of the thoracic aorta. We deployed our segmentation approach on imaging scans from 54,241 participants in the UK Biobank and 8,456 participants in the Penn Medicine Biobank.

CONCLUSION

Our method provides a fully automated approach toward quantifying the three-dimensional structural parameters of the aorta. This approach expands the available phenotypes in two large representative biobanks and will allow large-scale studies to elucidate the biology and clinical consequences of aortic degeneration related to aging and disease states.

摘要

引言

主动脉结构通过多种机制影响心血管健康。主动脉结构退变随年龄增长而发生,增加左心室后负荷,并促使动脉搏动性增加和靶器官损害。尽管主动脉结构对心血管健康有影响,但在大量人群中尚未全面表征三维(3D)主动脉几何形状。

方法

我们使用深度学习架构对整个胸主动脉进行分割,并使用形态学图像操作来提取胸主动脉各个子段的多种主动脉几何表型(AGP,包括直径、长度、曲率和迂曲度)。我们将我们的分割方法应用于英国生物银行54241名参与者和宾夕法尼亚大学医学中心生物银行8456名参与者的影像扫描。

结论

我们的方法提供了一种全自动方法来量化主动脉的三维结构参数。这种方法扩展了两个大型代表性生物银行中可用的表型,并将使大规模研究能够阐明与衰老和疾病状态相关的主动脉退变的生物学特性和临床后果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78e2/12052382/9d403834a4fc/pls-2025-0013-0001-543613_F01.jpg

相似文献

1
Thoracic Aortic Three-Dimensional Geometry.胸主动脉三维几何学
Pulse (Basel). 2025 Jan 27;13(1):72-79. doi: 10.1159/000543613. eCollection 2025 Jan-Dec.
2
Thoracic Aortic Three-Dimensional Geometry.胸主动脉三维几何学
bioRxiv. 2024 Oct 31:2024.05.09.593413. doi: 10.1101/2024.05.09.593413.
9
Automatic Segmentation and Alignment of Uterine Shapes from 3D Ultrasound Data.从 3D 超声数据中自动分割和对齐子宫形状。
Comput Biol Med. 2024 Aug;178:108794. doi: 10.1016/j.compbiomed.2024.108794. Epub 2024 Jun 27.

本文引用的文献

1
3
Deep learning enables genetic analysis of the human thoracic aorta.深度学习可用于人类胸主动脉的基因分析。
Nat Genet. 2022 Jan;54(1):40-51. doi: 10.1038/s41588-021-00962-4. Epub 2021 Nov 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验