Suppr超能文献

红移荧光蛋白在深层组织分子成像应用中的性能

Performance of the red-shifted fluorescent proteins in deep-tissue molecular imaging applications.

作者信息

Deliolanis Nikolaos C, Kasmieh Randa, Wurdinger Thomas, Tannous Bakhos A, Shah Khalid, Ntziachristos Vasilis

机构信息

Massachusetts General Hospital and Harvard Medical School, Center for Molecular Imaging Research, Laboratory for Bio-Optics and Molecular Imaging, Charlestown, Massachusetts 02139, USA.

出版信息

J Biomed Opt. 2008 Jul-Aug;13(4):044008. doi: 10.1117/1.2967184.

Abstract

The discovery of new fluorescent proteins (FPs) that emit in the far-red part of the spectrum, where light absorption from tissue is significantly lower than in the visible, offers the possibility for noninvasive biological interrogation at the entire organ or small animal level in vivo. The performance of FPs in deep-tissue imaging depends not only on their optical characteristics, but also on the wavelength-dependent tissue absorption and the depth of the fluorescence activity. To determine the optimal choice of FP and illumination wavelength, we compared the performance of five of the most promising FPs: tdTomato, mCherry, mRaspberry, mPlum, and Katushka. We experimentally measured the signal strength through mice and employed theoretical predictions to obtain an understanding of the performance of different illumination scenarios, especially as they pertain to tomographic imaging. It was found that the appropriate combination of red-shifted proteins and illumination wavelengths can improve detection sensitivity in small animals by at least two orders of magnitude compared with green FP. It is also shown that the steep attenuation change of the hemoglobin spectrum around the 600-nm range may significantly affect the detection sensitivity and, therefore, necessitates the careful selection of illumination wavelengths for optimal imaging performance.

摘要

发现发射光谱处于远红部分的新型荧光蛋白(FPs),在该波段组织对光的吸收明显低于可见光波段,这为在体内对整个器官或小动物进行非侵入性生物学检测提供了可能。荧光蛋白在深层组织成像中的性能不仅取决于其光学特性,还取决于波长依赖性组织吸收以及荧光活性深度。为了确定荧光蛋白和照明波长的最佳选择,我们比较了五种最有前景的荧光蛋白的性能:tdTomato、mCherry、mRaspberry、mPlum和Katushka。我们通过实验测量了透过小鼠的信号强度,并利用理论预测来了解不同照明场景下的性能,特别是与断层成像相关的性能。结果发现,与绿色荧光蛋白相比,红移蛋白和照明波长的适当组合可将小动物的检测灵敏度提高至少两个数量级。研究还表明,血红蛋白光谱在600纳米范围附近的陡峭衰减变化可能会显著影响检测灵敏度,因此,为了获得最佳成像性能,需要仔细选择照明波长。

相似文献

4
Fluorescent protein tomography scanner for small animal imaging.
IEEE Trans Med Imaging. 2005 Jul;24(7):878-85. doi: 10.1109/tmi.2004.843254.
5
Spatial frequency domain tomography of protoporphyrin IX fluorescence in preclinical glioma models.
J Biomed Opt. 2012 May;17(5):056008. doi: 10.1117/1.JBO.17.5.056008.
7
Bright far-red fluorescent protein for whole-body imaging.
Nat Methods. 2007 Sep;4(9):741-6. doi: 10.1038/nmeth1083. Epub 2007 Aug 26.
8
FUCCI-Red: a single-color cell cycle indicator for fluorescence lifetime imaging.
Cell Mol Life Sci. 2021 Apr;78(7):3467-3476. doi: 10.1007/s00018-020-03712-7. Epub 2021 Feb 8.
10
Deep-tissue reporter-gene imaging with fluorescence and optoacoustic tomography: a performance overview.
Mol Imaging Biol. 2014 Oct;16(5):652-60. doi: 10.1007/s11307-014-0728-1.

引用本文的文献

1
Induction of Endometriosis in a Menstruating Mouse Model (Mus musculus): A Translational Animal Disease Model.
J Am Assoc Lab Anim Sci. 2025 May 1;64(4):1-15. doi: 10.30802/AALAS-JAALAS-24-160.
3
Regulation of Absorption and Emission in a Protein/Fluorophore Complex.
ACS Chem Biol. 2024 Aug 16;19(8):1725-1732. doi: 10.1021/acschembio.4c00125. Epub 2024 Jul 24.
4
Ecological drift during colonization drives within-host and between-host heterogeneity in an animal-associated symbiont.
PLoS Biol. 2024 Apr 25;22(4):e3002304. doi: 10.1371/journal.pbio.3002304. eCollection 2024 Apr.
6
Near-infrared diffuse in vivo flow cytometry.
J Biomed Opt. 2022 Sep;27(9). doi: 10.1117/1.JBO.27.9.097002.
7
Synthesis of Holmium-Oxide Nanoparticles for Near-Infrared Imaging and Dye-Photodegradation.
Molecules. 2022 May 30;27(11):3522. doi: 10.3390/molecules27113522.
8
Use of red, far-red, and near-infrared light in imaging of yeasts and filamentous fungi.
Appl Microbiol Biotechnol. 2022 Jun;106(11):3895-3912. doi: 10.1007/s00253-022-11967-2. Epub 2022 May 23.
9
Fluorescence microendoscopy for in vivo deep-brain imaging of neuronal circuits.
J Neurosci Methods. 2021 Jan 15;348:109015. doi: 10.1016/j.jneumeth.2020.109015. Epub 2020 Nov 28.
10
Coiled-coil inspired functional inclusion bodies.
Microb Cell Fact. 2020 Jun 1;19(1):117. doi: 10.1186/s12934-020-01375-4.

本文引用的文献

2
Bright far-red fluorescent protein for whole-body imaging.
Nat Methods. 2007 Sep;4(9):741-6. doi: 10.1038/nmeth1083. Epub 2007 Aug 26.
4
In vivo imaging of lymph node metastasis with telomerase-specific replication-selective adenovirus.
Nat Med. 2006 Oct;12(10):1213-9. doi: 10.1038/nm1404. Epub 2006 Oct 1.
6
From finite to infinite volumes: removal of boundaries in diffuse wave imaging.
Phys Rev Lett. 2006 May 5;96(17):173903. doi: 10.1103/PhysRevLett.96.173903. Epub 2006 May 4.
7
Planar fluorescence imaging using normalized data.
J Biomed Opt. 2005 Nov-Dec;10(6):064007. doi: 10.1117/1.2136148.
8
Volumetric tomography of fluorescent proteins through small animals in vivo.
Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18252-7. doi: 10.1073/pnas.0504628102. Epub 2005 Dec 12.
9
Deep tissue two-photon microscopy.
Nat Methods. 2005 Dec;2(12):932-40. doi: 10.1038/nmeth818.
10
The multiple uses of fluorescent proteins to visualize cancer in vivo.
Nat Rev Cancer. 2005 Oct;5(10):796-806. doi: 10.1038/nrc1717.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验